Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 168: 9-16, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30384172

ABSTRACT

Cold exposure aggravates respiratory diseases, which are also influenced by the exposures to particulate matter and endotoxin in the air. The aim of this study was to investigate the potential interactions among cold stress, fine particulate matter (PM2.5, particles with aerodynamic diameter of 2.5 µm or less) and lipopolysaccharide (LPS, pure chemical form of endotoxin) on rat lung and to explore the related possible mechanisms of the interactions. Wistar rats were randomly grouped to be exposed to, 1) normal saline (0.9% NaCl), 2) PM2.5, 3) LPS, and 4) PM2.5 and LPS (PM2.5 + LPS) through intratracheal instillation under cold stress (0 °C) and normal temperature (20 °C). Lung function, lung tissue histology, inflammatory response and oxidative stress levels were measured to examine the lung injury and to investigate the potential mechanisms. Exposure to PM2.5 or LPS substantially changed pulmonary function [indicated by peak inspiratory flow (PIF) and peak expiratory flow (PEF)], inflammatory cytokine levels [indicated by interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] and lung histology, compared to the non-exposed groups. Exposure to PM2.5 + LPS under cold stress induced the most significant changes, including the increases of IL-6, TNF-α and thiobarbituric acid-reactive substances (TBARS), the decreases of PIF and PEF and more severe lung injury, among all exposure scenarios. Glutathione peroxidase activity and, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were found to be suppressed under cold stress, whereas Nrf2 and HO-1 levels were observed to be upregulated by exposure to PM2.5 or LPS under normal temperature. In conclusion, cold stress may aggravate the lung injury in rats induced by simultaneous exposure to PM2.5 and LPS. The progress may involve the suppressing of Nrf2/HO-1 signal pathway.


Subject(s)
Cold-Shock Response/physiology , Lipopolysaccharides/toxicity , Lung Injury/etiology , Particulate Matter/toxicity , Animals , Cytokines/metabolism , Lung/pathology , Lung Injury/pathology , Male , NF-E2-Related Factor 2/metabolism , Oxidative Stress/physiology , Particulate Matter/metabolism , Random Allocation , Rats, Wistar , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism
2.
Environ Sci Pollut Res Int ; 24(28): 22579-22586, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28808862

ABSTRACT

Immune system is critical to protecting human health from toxic substances. Our previously published research had found an important link between polycyclic aromatic hydrocarbons (PAHs) in ambient air and changes at the DNA level in immune cells that led to impaired function of regulatory T (Treg) cells in children living in California, USA. But molecular and cellular pathways of these changes remain unclear. The present study aims to explore whether exposure to PAHs leads to changes in Treg cells functions of children living in Gansu, China, where ambient air pollution levels are much higher than those in California, and to explore potential mechanisms of PAH-induced immunological dysfunctions. Air pollutions in Lanzhou and Lintao, Gansu Province, were measured from December 2015 to June 2016. Healthy children were recruited from both cities and enrolled in this pilot study. Demographic information was collected by questionnaires. Blood samples were collected. Peripheral blood Treg cells were analyzed for Treg cells percentage by flow cytometry. Gene expression of forkhead box transcription factor 3 (Foxp3), transforming growth factor-ß (TGF-ß), and interleukin 35 (IL35) were examined by reverse transcription-polymerase chain reaction (RT-PCR). The results indicated PAH concentration (as sum of 16 PAHs) in Lintao was over two times higher than that was in Lanzhou (707 vs. 326 ng/m3), whereas PM2.5 concentration was comparable in two cities (55.3 in Lintao vs. 65.7 µg/m3 in Lanzhou). Notably, we observed lower gene expressions for Foxp3 (P < 0.05), IL35 (P < 0.05), and TGF-ß, in children living in Lintao, suggesting an impairment of Treg cells function potentially associated with higher PAH exposure in Lintao. However, no significant difference was observed in Treg cells % among CD4+ T cells between Lanzhou and Lintao groups.


Subject(s)
Air Pollutants/immunology , Polycyclic Aromatic Hydrocarbons/immunology , T-Lymphocytes, Regulatory/physiology , Air Pollutants/analysis , California , Child , China , Cities , Female , Flow Cytometry , Forkhead Transcription Factors/blood , Humans , Male , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...