Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine (Lond) ; 5(10): 1547-57, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20879836

ABSTRACT

AIMS: In cancer therapy, research has focused on the development of nanocarriers that can aid diagnosis, deliver therapeutic agents and monitor treatment progress. This study introduces high-resolution synchrotron x-ray fluorescence microscopy (SR-XFM) to investigate intracellular localization of novel lanthanide-coated nanoparticles in human cells and their genotoxicity screening after internalization. MATERIALS & METHODS: Noble metal nanoparticles coated with cerium and luminescent europium complexes have been developed as platforms for bioimaging and potential biodelivery applications. The intracellular distribution after internalization has been analyzed by ultrasensitive SR-XFM and genotoxicity evaluated using γ-H2AX DNA damage foci phosphorylation assay. RESULTS: We demonstrate the unprecedented capability of SR-XFM for extremely sensitive nanoimaging and intracellular elemental distribution analysis of noble metal nanoparticles in cells. Furthermore, we show that, depending on the charge of the coating complex and the presence of the DNA cargo, the internalization of functionalized nanoparticles by human fibroblasts can cause elevated levels of DNA damage detected by histone H2AX phosphorylation. CONCLUSION: The variable genotoxic impact of newly designed nanovectors emphasizes the need for careful and comprehensive testing of biological responses of all new nanoconstructs intended for future clinical applications. This can be greatly facilitated by SR-XFM nanoimaging of nanoparticles in cells at very low concentrations.


Subject(s)
DNA Damage/physiology , Diagnostic Imaging/methods , Lanthanoid Series Elements/chemistry , Metal Nanoparticles/chemistry , Microscopy, Fluorescence/methods , Synchrotrons , Cell Line , DNA Damage/genetics , Histones/metabolism , Humans , Phosphorylation
2.
Phys Chem Chem Phys ; 12(22): 5868-71, 2010 Jun 14.
Article in English | MEDLINE | ID: mdl-20454737

ABSTRACT

Dynamic nuclear polarization (DNP) has become an attractive technique to boost the sensitivity of NMR experiments. In the case of ex situ polarizations two-dimensional (2D) spectra are limited by the short lifetime of the polarization after dissolution and sample transfer to a high field NMR magnet. This limitation can be overcome by various approaches. Here we show how the use of (13)C-labelled acetyl tags can help to obtain 2D-HMQC spectra for many small molecules, owing to a nuclear Overhauser enhancement between (13)C spins originating from the long-lived carbonyl carbon, which extends the lifetimes of other (13)C spins with shorter longitudinal relaxation times. We also show an alternative approach of using an optimized polarization matrix.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Acetates/chemistry , Anisoles/chemistry , Carbon Isotopes/chemistry , Chlorides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...