Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35406434

ABSTRACT

Severe asthma and lung cancer are both heterogeneous pathological diseases affecting the lung tissue. Whilst there are a few studies that suggest an association between asthma and lung cancer, to the best of our knowledge, this is the first study to identify common genes involved in both severe asthma and lung cancer. Publicly available transcriptomic data for 23 epithelial brushings from severe asthmatics and 55 samples of formalin-fixed paraffin-embedded (FFPE) lung cancer tissue at relatively early stages were analyzed by absolute gene set enrichment analysis (GSEA) in comparison to 37 healthy bronchial tissue samples. The key pathways enriched in asthmatic patients included adhesion, extracellular matrix, and epithelial cell proliferation, which contribute to tissue remodeling. In the lung cancer dataset, the main pathways identified were receptor tyrosine kinase signaling, wound healing, and growth factor response, representing the early cancer pathways. Analysis of the enriched genes derived from the pathway analysis identified seven genes expressed in both the asthma and lung cancer sets: BCL3, POSTN, PPARD, STAT1, MYC, CD44, and FOSB. The differential expression of these genes was validated in vitro in the cell lines retrieved from different lung cancer and severe asthma patients using real-time PCR. The effect of the expression of the seven genes identified in the study on the overall survival of lung cancer patients (n = 1925) was assessed using a Kaplan-Meier plot. In vivo validation performed in the archival biopsies obtained from patients diagnosed with both the disease conditions provided interesting insights into the pathogenesis of severe asthma and lung cancer, as indicated by the differential expression pattern of the seven transcripts in the mixed group as compared to the asthmatics and lung cancer samples alone.

2.
Front Immunol ; 12: 595150, 2021.
Article in English | MEDLINE | ID: mdl-34262555

ABSTRACT

As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Kidney/immunology , Liver/immunology , Lung/immunology , Myocardium/immunology , Pandemics , SARS-CoV-2/immunology , Severity of Illness Index , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Case-Control Studies , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/biosynthesis , Humans , Immunity/genetics , Monocytes/immunology , Neutrophils/immunology , Transcriptome , Up-Regulation/genetics
3.
World J Gastroenterol ; 27(21): 2850-2870, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34135558

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19), a pandemic contributing to more than 105 million cases and more than 2.3 million deaths worldwide, was described to be frequently accompanied by extrapulmonary manifestations, including liver dysfunction. Liver dysfunction and elevated liver enzymes were observed in about 53% of COVID-19 patients. AIM: To gain insight into transcriptional abnormalities in liver tissue of severe COVID-19 patients that may result in liver dysfunction. METHODS: The transcriptome of liver autopsy samples from severe COVID-19 patients against those of non-COVID donors was analyzed. Differentially expressed genes were identified from normalized RNA-seq data and analyzed for the enrichment of functional clusters and pathways. The differentially expressed genes were then compared against the genetic signatures of liver diseases including cirrhosis, fibrosis, non-alcoholic fatty liver disease (NAFLD), and hepatitis A/B/C. Gene expression of some differentially expressed genes was assessed in the blood samples of severe COVID-19 patients with liver dysfunction using qRT-PCR. RESULTS: Analysis of the differential transcriptome of the liver tissue of severe COVID-19 patients revealed a significant upregulation of transcripts implicated in tissue remodeling including G-coupled protein receptors family genes, DNAJB1, IGF2, EGFR, and HDGF. Concordantly, the differential transcriptome of severe COVID-19 liver tissues substantially overlapped with the disease signature of liver diseases characterized with pathological tissue remodeling (liver cirrhosis, Fibrosis, NAFLD, and hepatitis A/B/C). Moreover, we observed a significant suppression of transcripts implicated in metabolic pathways as well as mitochondrial function, including cytochrome P450 family members, ACAD11, CIDEB, GNMT, and GPAM. Consequently, drug and xenobiotics metabolism pathways are significantly suppressed suggesting a decrease in liver detoxification capacity. In correspondence with the RNA-seq data analysis, we observed a significant upregulation of DNAJB1 and HSP90AB1 as well as significant downregulation of CYP39A1 in the blood plasma of severe COVID-19 patients with liver dysfunction. CONCLUSION: Severe COVID-19 patients appear to experience significant transcriptional shift that may ensue tissue remodeling, mitochondrial dysfunction and lower hepatic detoxification resulting in the clinically observed liver dysfunction.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , HSP40 Heat-Shock Proteins , Humans , Liver , SARS-CoV-2 , Steroid Hydroxylases , Systems Biology , Transcriptome
4.
Front Immunol ; 11: 569671, 2020.
Article in English | MEDLINE | ID: mdl-33381110

ABSTRACT

Immunomodulation and chronic inflammation are important mechanisms utilized by cancer cells to evade the immune defense and promote tumor progression. Therefore, various efforts were focused on the development of approaches to reprogram the immune response to increase the immune detection of cancer cells and enhance patient response to various types of therapy. A number of regulatory proteins were investigated and proposed as potential targets for immunomodulatory therapeutic approaches including p53 and Snail. In this study, we investigated the immunomodulatory effect of disrupting Snail-p53 binding induced by the oncogenic KRAS to suppress p53 signaling. We analyzed the transcriptomic profile mediated by Snail-p53 binding inhibitor GN25 in non-small cell lung cancer cells (A549) using Next generation whole RNA-sequencing. Notably, we observed a significant enrichment in transcripts involved in immune response pathways especially those contributing to neutrophil (IL8) and T-cell mediated immunity (BCL6, and CD81). Moreover, transcripts associated with NF-κB signaling were also enriched which may play an important role in the immunomodulatory effect of Snail-p53 binding. Further analysis revealed that the immune expression signature of GN25 overlaps with the signature of other therapeutic compounds known to exhibit immunomodulatory effects validating the immunomodulatory potential of targeting Snail-p53 binding. The effects of GN25 on the immune response pathways suggest that targeting Snail-p53 binding might be a potentially effective therapeutic strategy.


Subject(s)
Mutation , Neutrophils/immunology , Neutrophils/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Snail Family Transcription Factors/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/genetics , Cell Line, Tumor , Computational Biology , Gene Expression Profiling , Humans , Immunity, Cellular/genetics , Immunomodulation , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , NF-kappa B/metabolism , Signal Transduction
5.
Histochem Cell Biol ; 152(1): 75-84, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30778673

ABSTRACT

One of the main aspects investigated in potential therapeutic compounds is their effect on cells viability and proliferative ability. Although various methods have been developed to investigate these aspects, these methods present with shortcomings in terms of either cost, availability, accuracy, precision, or throughput. This study describes a simple, economic, reproducible, and high-throughput assay to quantify cell death and proliferation. In this assay, adherent cells are fixed, stained with trypan blue, and measured for trypan blue internalization using a spectrophotometric absorbance plate reader. Corresponding cell counts to the absorbance measurements are extrapolated from a standard curve. This assay was used to measure the effect of dimethyl sulfoxide (DMSO) on the viability of breast and lung cancer cells. Decrease in cell count associated with the increase in DMSO percentage and exposure time. The assay's results closely correlated with the conventional trypan blue exclusion assay (Pearson correlation coefficient (r) > 0.99; p < 0.0001), but with higher precision. The assay developed in this study can be used for various applications such as optimization, cell treatment investigations, proliferation, and cytotoxicity studies.


Subject(s)
Breast Neoplasms/pathology , Dimethyl Sulfoxide/pharmacology , Lung Neoplasms/pathology , Trypan Blue/analysis , A549 Cells , Cell Survival/drug effects , Humans , Spectrophotometry , Trypan Blue/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...