Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Transl Eng Health Med ; 12: 448-456, 2024.
Article in English | MEDLINE | ID: mdl-38765887

ABSTRACT

OBJECTIVE: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG. METHODS AND PROCEDURES: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches. RESULTS: Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen's kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process. CONCLUSION: Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques. CLINICAL IMPACT: An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.


Subject(s)
Electroencephalography , Scalp , Humans , Electroencephalography/methods , Aged , Scalp/physiology , Aged, 80 and over , Male , Female , Sleep/physiology , Signal Processing, Computer-Assisted , Ear/physiology , Machine Learning , Polysomnography/methods
2.
IEEE Open J Eng Med Biol ; 5: 148-156, 2024.
Article in English | MEDLINE | ID: mdl-38487098

ABSTRACT

The rapidly increasing prevalence of debilitating breathing disorders, such as chronic obstructive pulmonary disease (COPD), calls for a meaningful integration of artificial intelligence (AI) into respiratory healthcare. Deep learning techniques are "data hungry" whilst patient-based data is invariably expensive and time consuming to record. To this end, we introduce a novel COPD-simulator, a physical apparatus with an easy to replicate design which enables rapid and effective generation of a wide range of COPD-like data from healthy subjects, for enhanced training of deep learning frameworks. To ensure the faithfulness of our domain-aware COPD surrogates, the generated waveforms are examined through both flow waveforms and photoplethysmography (PPG) waveforms (as a proxy for intrathoracic pressure) in terms of duty cycle, sample entropy, FEV1/FVC ratios and flow-volume loops. The proposed simulator operates on healthy subjects and is able to generate FEV1/FVC obstruction ratios ranging from greater than 0.8 to less than 0.2, mirroring values that can observed in the full spectrum of real-world COPD. As a final stage of verification, a simple convolutional neural network is trained on surrogate data alone, and is used to accurately detect COPD in real-world patients. When training solely on surrogate data, and testing on real-world data, a comparison of true positive rate against false positive rate yields an area under the curve of 0.75, compared with 0.63 when training solely on real-world data.

3.
R Soc Open Sci ; 11(1): 221620, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38179073

ABSTRACT

The ear is well positioned to accommodate both brain and vital signs monitoring, via so-called hearable devices. Consequently, ear-based electroencephalography has recently garnered great interest. However, despite the considerable potential of hearable based cardiac monitoring, the biophysics and characteristic cardiac rhythm of ear-based electrocardiography (ECG) are not yet well understood. To this end, we map the cardiac potential on the ear through volume conductor modelling and measurements on multiple subjects. In addition, in order to demonstrate real-world feasibility of in-ear ECG, measurements are conducted throughout a long-time simulated driving task. As a means of evaluation, the correspondence between the cardiac rhythms obtained via the ear-based and standard Lead I measurements, with respect to the shape and timing of the cardiac rhythm, is verified through three measures of similarity: the Pearson correlation, and measures of amplitude and timing deviations. A high correspondence between the cardiac rhythms obtained via the ear-based and Lead I measurements is rigorously confirmed through agreement between simulation and measurement, while the real-world feasibility was conclusively demonstrated through efficacious cardiac rhythm monitoring during prolonged driving. This work opens new avenues for seamless, hearable-based cardiac monitoring that extends beyond heart rate detection to offer cardiac rhythm examination in the community.

4.
IEEE Trans Biomed Eng ; 71(7): 2014-2021, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38285581

ABSTRACT

The Ear-ECG provides a continuous Lead I like electrocardiogram (ECG) by measuring the potential difference related to heart activity by electrodes which are embedded within earphones. However, the significant increase in wearability and comfort enabled by Ear-ECG is often accompanied by a degradation in signal quality - an obstacle that is shared by the majority of wearable technologies. We aim to resolve this issue by introducing a Deep Matched Filter (Deep-MF) for the highly accurate detection of R-peaks in wearable ECG, thus enhancing the utility of Ear-ECG in real-world scenarios. The Deep-MF consists of an encoder stage, partially initialised with an ECG template, and an R-peak classifier stage. Through its operation as a Matched Filter, the encoder searches for matches with an ECG template in the input signal, prior to filtering these matches with the subsequent convolutional layers and selecting peaks corresponding to the ground-truth ECG. The latent representation of R-peak information is then fed into a R-peak classifier, of which the output provides precise R-peak locations. The proposed Deep Matched Filter is evaluated using leave-one-subject-out cross-validation over 36 subjects with an age range of 18-75, with the Deep-MF outperforming existing algorithms for R-peak detection in noisy ECG. The Deep-MF achieves a median R-peak recall of 94.9% and a median precision of 91.2% across subjects when evaluated with leave-one-subject-out cross validation. Overall, this Deep-Match framework serves as a valuable step forward for the real-world functionality of Ear-ECG and, through its interpretable operation, the acceptance of deep learning models in e-Health.


Subject(s)
Algorithms , Deep Learning , Electrocardiography , Signal Processing, Computer-Assisted , Humans , Electrocardiography/methods , Wearable Electronic Devices , Adult , Ear/physiology
5.
Article in English | MEDLINE | ID: mdl-38083340

ABSTRACT

Sleep disorders are a prevalent problem among older adults, yet obtaining an accurate and reliable assessment of sleep quality can be challenging. Traditional polysomnography (PSG) is the gold standard for sleep staging, but is obtrusive, expensive, and requires expert assistance. To this end, we propose a minimally invasive single-channel single ear-EEG automatic sleep staging method for older adults. The method employs features from the frequency, time, and structural complexity domains, which provide a robust classification of sleep stages from a standardised viscoelastic earpiece. Our method is verified on a dataset of older adults and achieves a kappa value of at least 0.61, indicating substantial agreement. This paves the way for a non-invasive, cost-effective, and portable alternative to traditional PSG for sleep staging.


Subject(s)
Sleep Wake Disorders , Sleep , Humans , Aged , Polysomnography/methods , Sleep Stages , Electroencephalography/methods
6.
Sensors (Basel) ; 23(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36992029

ABSTRACT

Monitoring diabetes saves lives. To this end, we introduce a novel, unobtrusive, and readily deployable in-ear device for the continuous and non-invasive measurement of blood glucose levels (BGLs). The device is equipped with a low-cost commercially available pulse oximeter whose infrared wavelength (880 nm) is used for the acquisition of photoplethysmography (PPG). For rigor, we considered a full range of diabetic conditions (non-diabetic, pre-diabetic, type I diabetic, and type II diabetic). Recordings spanned nine different days, starting in the morning while fasting, up to a minimum of a two-hour period after eating a carbohydrate-rich breakfast. The BGLs from PPG were estimated using a suite of regression-based machine learning models, which were trained on characteristic features of PPG cycles pertaining to high and low BGLs. The analysis shows that, as desired, an average of 82% of the BGLs estimated from PPG lie in region A of the Clarke error grid (CEG) plot, with 100% of the estimated BGLs in the clinically acceptable CEG regions A and B. These results demonstrate the potential of the ear canal as a site for non-invasive blood glucose monitoring.


Subject(s)
Blood Glucose , Photoplethysmography , Photoplethysmography/methods , Blood Glucose Self-Monitoring , Oximetry/methods , Oxygen
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6889-6893, 2021 11.
Article in English | MEDLINE | ID: mdl-34892689

ABSTRACT

Ear-worn devices are rapidly gaining popularity as they provide the means for measuring vital signals in an unobtrusive, 24/7 wearable and discrete fashion. Naturally, these devices are prone to motion artefacts when used in out-of-lab environments, various movements and activities cause relative movement between user's skin and the electrodes. Historically, these artefacts are seen as nuisance resulting in discarding the segments of signal wherever such artefacts are present. In this work, we make use of such artefacts to classify different daily activities that include sitting, speaking aloud, chewing and walking. To this end, multiple classification techniques are employed to identify these activities using 8 features calculated from the electrode and microphone signal embedded in a generic multimodal in-ear sensor. The results show an overall training accuracy of 93% and 90% and a testing accuracy of 85% and 80% when using a KNN and a 2-layer neural network respectively, thus providing a much needed, simple and reliable framework for real-life human activity classification.


Subject(s)
Artifacts , Electroencephalography , Electrodes , Human Activities , Humans , Motion
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5777-5780, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947165

ABSTRACT

Out-of-clinic, continuous monitoring of vital signs is envisaged to become the backbone of future e-health. The emerging wrist worn devices have already proven to be a success in the measurement of pulse, however, a susceptibility to artefacts and missing data caused by regular motion in everyday activities, and the inability to continuously acquire the electrocardiogram call into question the utility of this technology in future e-Health. With this in mind, the head, and in particular the ear canals, have been investigated as possible locations for wearable devices. The ears offer a stable position relative to the vital signs during everyday activities, such as sitting, walking, running and sleeping, as well as being a practical and widely accepted base for wearable accessories. This all suggests that the ear canals are a most natural location for physiological sensing in the community. This work addresses the feasibility of recording the ECG from the ear canals, from a one-fits-all, user-friendly device. For rigour and clarity, we quantitatively compare the timings of the identified P-, QRS-, and T-waves within Ear-ECG and standard arm-ECG. Finally, to depict a future e-Health scenario for the Ear-ECG technology, a case study with an abnormal heart condition, the ventricular bigeminy, is presented. A comprehensive study over ten subjects demonstrates conclusively the possibility of in-ear cardiac monitoring in normal daily life.


Subject(s)
Electrocardiography , Wearable Electronic Devices , Ear , Feasibility Studies , Heart Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...