Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
3.
ACS Appl Mater Interfaces ; 15(24): 29535-29541, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37278556

ABSTRACT

The wide band gap semiconductor κ-Ga2O3 and its aluminum and indium alloys have been proposed as promising materials for many applications. One of them is the use of inter-sub-band transitions in quantum-well (QW) systems for infrared detectors. Our simulations show that the detection wavelength range of nowadays state of the art GaAs/AlxGa1-xAs quantum-well infrared photodetectors (QWIPs) could be substantially excelled with about 1-100 µm using κ-([Al,In]xGa1-x)2O3, while at the same time being transparent to visible light and therefore insensitive to photon noise due to its wide band gap, demonstrating the application potential of this material system. Our simulations further show that the QWIPs efficiency critically depends on the QW thickness, making a precise control over the thickness during growth and a reliable thickness determination essential. We demonstrate that pulsed laser deposition yields the needed accuracy, by analyzing a series of (InxGa1-x)2O3 QWs with (AlyGa1-y)2O3 barriers with high-resolution X-ray diffraction, X-ray photoelectron spectroscopy (XPS) depth profiling, and transmission electron microscopy (TEM). While the superlattice fringes of high-resolution X-ray diffraction only yield an average combined thickness of the QWs and the barrier and X-ray spectroscopy depth profiling requires elaborated modeling of the XPS signal to accurately determine the thickness of such QWs, TEM is the method of choice when it comes to the determination of QW thicknesses.

4.
Nanotechnology ; 34(24)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36806199

ABSTRACT

Conductive bridge random access memory devices such as Cu/SiO2/W are promising candidates for applications in neuromorphic computing due to their fast, low-voltage switching, multiple-conductance states, scalability, low off-current, and full compatibility with advanced Si CMOS technologies. The conductance states, which can be quantized, originate from the formation of a Cu filament in the SiO2electrolyte due to cation-migration-based electrochemical processes. A major challenge related to the filamentary nature is the strong variability of the voltage required to switch the device to its conducting state. Here, based on a statistical analysis of more than hundred fifty Cu/SiO2/W devices, we point to the key role of the activation energy distribution for copper ion diffusion in the amorphous SiO2. The cycle-to-cycle variability is modeled well when considering the theoretical energy landscape for Cu diffusion paths to grow the filament. Perspectives of this work point to developing strategies to narrow the distribution of activation energies in amorphous SiO2.

5.
Sci Adv ; 8(42): eabq5682, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36269832

ABSTRACT

Coherent phonon spectroscopy can provide microscopic insight into ultrafast lattice dynamics and its coupling to other degrees of freedom under nonequilibrium conditions. Ultrafast optical spectroscopy is a well-established method to study coherent phonons, but the diffraction limit has hampered observing their local dynamics directly. Here, we demonstrate nanoscale coherent phonon spectroscopy using ultrafast laser-induced scanning tunneling microscopy in a plasmonic junction. Coherent phonons are locally excited in ultrathin zinc oxide films by the tightly confined plasmonic field and are probed via the photoinduced tunneling current through an electronic resonance of the zinc oxide film. Concurrently performed tip-enhanced Raman spectroscopy allows us to identify the involved phonon modes. In contrast to the Raman spectra, the phonon dynamics observed in coherent phonon spectroscopy exhibit strong nanoscale spatial variations that are correlated with the distribution of the electronic local density of states resolved by scanning tunneling spectroscopy.

6.
Faraday Discuss ; 236(0): 103-125, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35485389

ABSTRACT

Photoelectron spectroscopy offers detailed information about the electronic structure and chemical composition of surfaces, owing to the short distance that the photoelectrons can escape from a dense medium. Unfortunately, photoelectron based spectroscopies are not directly compatible with the liquids required to investigate electrochemical processes, especially in the soft X-ray regime. To overcome this issue, different approaches based on photoelectron spectroscopy have been developed in our group over the last few years. The performance and the degree of information provided by these approaches are compared with those of the well established bulk sensitive spectroscopic approach of total fluorescence yield detection, where the surface information gained from this approach is enhanced using samples with large surface to bulk ratios. The operation of these approaches is exemplified and compared using the oxygen evolution reaction on IrOx catalysts. We found that all the approaches, if properly applied, provide similar information about surface oxygen speciation. However, using resonant photoemission spectroscopy, we were able to prove that speciation is more involved and complex than previously thought during the oxygen evolution reaction on IrOx based electrocatalysts. We found that the electrified solid-liquid interface is composed of different oxygen species, where the terminal oxygen atoms on iridium are the active species, yielding the formation of peroxo species and, finally, dioxygen as the reaction product. Thus, the oxygen-oxygen bond formation is dominated by peroxo species formation along the reaction pathway. Furthermore, the methodologies discussed here open up opportunities to investigate electrified solid-liquid interfaces in a multitude of electrochemical processes with unprecedented speciation capabilities, which are not accessible by one-dimensional X-ray spectroscopies.

7.
Nano Lett ; 22(6): 2170-2176, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35188400

ABSTRACT

Charge-transfer enhancement of Raman scattering plays a crucial role in current-carrying molecular junctions. However, the microscopic mechanism of light scattering in such nonequilibrium systems is still imperfectly understood. Here, using low-temperature tip-enhanced Raman spectroscopy (TERS), we investigate how Raman scattering evolves as a function of the gap distance in the single C60-molecule junction consisting of an Ag tip and various metal surfaces. Precise gap-distance control allows the examination of two distinct transport regimes, namely tunneling regime and molecular point contact (MPC). Simultaneous measurement of TERS and the electric current in scanning tunneling microscopy shows that the MPC formation results in dramatic Raman enhancement that enables one to observe the vibrations undetectable in the tunneling regime. This enhancement is found to commonly occur not only for coinage but also transition metal substrates. We suggest that the characteristic enhancement upon the MPC formation is rationalized by charge-transfer excitation.

8.
Nano Lett ; 21(9): 4057-4061, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33934600

ABSTRACT

Tip-enhanced Raman scattering (TERS) has recently demonstrated the exceptional sensitivity to observe vibrational structures on the atomic scale. However, it strongly relies on electromagnetic enhancement in plasmonic nanogaps. Here, we demonstrate that atomic point contact (APC) formation between a plasmonic tip and the surface of a bulk Si sample can lead to a dramatic enhancement of Raman scattering and consequently the phonons of the reconstructed Si(111)-7 × 7 surface can be detected. Furthermore, we demonstrate the chemical sensitivity of APC-TERS by probing local vibrations resulting from Si-O bonds on the partially oxidized Si(111)-7 × 7 surface. This approach will expand the applicability of ultrasensitive TERS, exceeding the previous measurement strategies that exploit intense gap-mode plasmons, typically requiring a plasmonic substrate.

9.
Nat Commun ; 11(1): 3554, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678088

ABSTRACT

How a catalyst behaves microscopically under reaction conditions, and what kinds of active sites transiently exist on its surface, is still very much a mystery to the scientific community. Here we present an in situ study on the red-ox behaviour of copper in the model reaction of hydrogen oxidation. Direct imaging combined with on-line mass spectroscopy shows that activity emerges near a phase boundary, where complex spatio-temporal dynamics are induced by the competing action of simultaneously present oxidizing and reducing agents. Using a combination of in situ imaging with in situ X-ray absorption spectroscopy and scanning photoemission microscopy, we reveal the relation between chemical and morphological dynamics and demonstrate that a static picture of active sites is insufficient to describe catalytic function of redox-active metal catalysts. The observed oscillatory redox dynamics provide a unique insight on phase-cooperation and a convenient and general mechanism for constant re-generation of transient active sites.

10.
Nano Lett ; 20(8): 5879-5884, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32678605

ABSTRACT

Tip-enhanced Raman scattering (TERS) in ångström-scale plasmonic cavities has drawn increasing attention. However, Raman scattering at vanishing cavity distances remains unexplored. Here, we show the evolution of TERS in transition from the tunneling regime to atomic point contact (APC). A stable APC is reversibly formed in the junction between an Ag tip and ultrathin ZnO or NaCl films on the Ag(111) surface at 10 K. An abrupt increase of the TERS intensity occurs upon APC formation for ZnO, but not for NaCl. This remarkable observation is rationalized by a difference in hybridization between the Ag tip and these films, which determines the contribution of charge transfer enhancement in the fused plasmonic junction. The strong hybridization between the Ag tip and ZnO is corroborated by the appearance of a new vibrational mode upon APC formation, whereas it is not observed for the chemically inert NaCl.

11.
Molecules ; 24(21)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683868

ABSTRACT

ZnO has prominent electron transport and optical properties, beneficial for photovoltaic application, but its surface is prone to the formation of defects. To overcome this problem, we deposited nanostructured TiO2 thin film on ZnO nanorods to form a stable shell. ZnO nanorods synthesized by wet-chemistry are single crystals. Three different procedures for deposition of TiO2 were applied. The influence of preparation methods and parameters on the structure, morphology, electrical and optical properties were studied. Nanostructured TiO2 shells show different morphologies dependent on deposition methods: (1) separated nanoparticles (by pulsed laser deposition (PLD) in Ar), (2) a layer with nonhomogeneous thickness (by PLD in vacuum or DC reactive magnetron sputtering), and (3) a homogenous thin layer along the nanorods (by chemical deposition). Based on the structural study, we chose the preparation parameters to obtain an anatase structure of the TiO2 shell. Impedance spectroscopy shows pure electron conductivity that was considerably better in all the ZnO@TiO2 than in bare ZnO nanorods or TiO2 layers. The best conductivity among the studied samples and the lowest activation energy was observed for the sample with a chemically deposited TiO2 shell. Higher transparency in the visible part of spectrum was achieved for the sample with a homogenous TiO2 layer along the nanorods, then in the samples with a layer of varying thickness.


Subject(s)
Nanostructures/chemistry , Nanotubes/chemistry , Titanium/chemistry , Zinc Oxide/chemistry , Dielectric Spectroscopy , Electric Conductivity , Electricity , Lasers
12.
Nano Lett ; 19(8): 5725-5731, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31361964

ABSTRACT

Low-temperature tip-enhanced Raman spectroscopy (TERS) enables chemical identification with single-molecule sensitivity and extremely high spatial resolution even down to the atomic scale. The large enhancement of Raman scattering obtained in TERS can originate from physical and/or chemical enhancement mechanisms. Whereas physical enhancement requires a strong near-field through excitation of localized surface plasmons, chemical enhancement is governed by resonance in the electronic structure of the sample, which is also known as resonance Raman spectroscopy. Here we report on tip-enhanced resonance Raman spectroscopy (TERRS) of ultrathin ZnO layers epitaxially grown on a Ag(111) surface, where both enhancement mechanisms are operative. In combination with scanning tunneling spectroscopy (STS), it is demonstrated that the TERRS intensity strongly depends on the local electronic resonance of the ZnO/Ag(111) interface. We also reveal that the spatial resolution of TERRS is dependent on the tip-surface distance and reaches nearly 1 nm in the tunneling regime, which can be rationalized by strong-field confinement resulting from an atomic-scale protrusion on the tip apex. Comparison of STS and TERRS mapping clearly shows a correlation between resonantly enhanced Raman scattering and the local electronic states at near-atomic resolution. Our results suggest that TERRS is a new approach for the atomic-scale optical characterization of local electronic states.

13.
Nano Lett ; 19(6): 3597-3602, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31070928

ABSTRACT

Near-field manipulation in plasmonic nanocavities can provide various applications in nanoscale science and technology. In particular, a gap plasmon in a scanning tunneling microscope (STM) junction is of key interest to nanoscale imaging and spectroscopy. Here we show that spectral features of a plasmonic STM junction can be manipulated by nanofabrication of Au tips using focused ion beam. An exemplary Fabry-Pérot type resonator of surface plasmons is demonstrated by producing the tip with a single groove on its shaft. Scanning tunneling luminescence spectra of the Fabry-Pérot tips exhibit spectral modulation resulting from interference between localized and propagating surface plasmon modes. In addition, the quality factor of the plasmonic Fabry-Pérot interference can be improved by optimizing the overall tip shape. Our approach paves the way for near-field imaging and spectroscopy with a high degree of accuracy.

14.
J Phys Chem Lett ; 10(9): 2068-2074, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30964304

ABSTRACT

The near-field spectral response of metallic nanocavities is a key characteristic in plasmon-assisted photophysical and photochemical processes. Here, we show that the near-field spectral response of an optically excited plasmonic scanning tunneling microscope (STM) junction can be probed by single-molecule reactions that serve as a nanoscale sensor detecting the local field intensity. Near-field action spectroscopy for the cis ↔ cis tautomerization of porphycene on a Cu(110) surface reveals that the field enhancement in the STM junction largely depends on microscopic structures not only on the tip apex, but also on its shaft. Using nanofabrication of Au tips with focused ion beam, we show that the spectral response is strongly modulated through the interference between the localized surface plasmon in the junction and propagating surface plasmon polariton generated on the shaft. Furthermore, it is demonstrated that the near-field spectral response can be manipulated by precisely shaping the tip shaft.

SELECTION OF CITATIONS
SEARCH DETAIL
...