Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer ; 23(1): 120, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831402

ABSTRACT

The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.


Subject(s)
Aclarubicin , Anthracyclines , Leukemia, Myeloid, Acute , Animals , Female , Humans , Male , Aclarubicin/pharmacology , Aclarubicin/therapeutic use , Anthracyclines/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Treatment Outcome
2.
Nat Rev Mol Cell Biol ; 24(6): 383-395, 2023 06.
Article in English | MEDLINE | ID: mdl-36344659

ABSTRACT

Cell type- and differentiation-specific gene expression is precisely controlled by genomic non-coding regulatory elements (NCREs), which include promoters, enhancers, silencers and insulators. It is estimated that more than 90% of disease-associated sequence variants lie within the non-coding part of the genome, potentially affecting the activity of NCREs. Consequently, the functional annotation of NCREs is a major driver of genome research. Compared with our knowledge of other regulatory elements, our knowledge of silencers, which are NCREs that repress the transcription of genes, is largely lacking. Multiple recent studies have reported large-scale identification of transcription silencer elements, indicating their importance in homeostasis and disease. In this Review, we discuss the biology of silencers, including methods for their discovery, epigenomic and other characteristics, and modes of function of silencers. We also discuss important silencer-relevant considerations in assessing data from genome-wide association studies and shed light on potential future silencer-based therapeutic applications.


Subject(s)
Genome-Wide Association Study , Silencer Elements, Transcriptional , Silencer Elements, Transcriptional/genetics , Regulatory Sequences, Nucleic Acid/genetics , Promoter Regions, Genetic , Gene Expression Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...