Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 154(11): 1999-2013, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38308587

ABSTRACT

The global pandemic of metabolic diseases has increased the incidence of hepatocellular carcinoma (HCC) in the context of non-alcoholic steatohepatitis (NASH). The downregulation of the E3 ubiquitin ligase TRIM21 has been linked to poor prognosis in different cancers including HCC. In order to investigate the role of TRIM21 in liver cancer progression on NASH, Trim21+/+ and Trim21-/- male mice were injected with streptozotocin at the neonatal stage. The hypoinsulinemic mice were then fed with a high-fat high-cholesterol diet (HFHCD) for 4, 8 or 12 weeks. All mice developed NASH which systematically resulted in HCC progression. Interestingly, compared to the Trim21+/+ control mice, liver damage was worsened in Trim21-/- mice, with more HCC nodules found after 12 weeks on HFHCD. Immune population analysis in the spleen and liver revealed a higher proportion of CD4+PD-1+ and CD8+PD-1+ T cells in Trim21-/- mice. The liver and HCC tumors of Trim21-/- mice also exhibited an increase in the number of PD-L1+ and CD68+ PD-L1+ cells. Thus, TRIM21 limits the emergence of HCC nodules in mice with NASH by potentially restricting the expression of PD-1 in lymphocytes and PD-L1 in tumors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Ribonucleoproteins , Animals , Male , Mice , B7-H1 Antigen/metabolism , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/complications , Disease Models, Animal , Liver Neoplasms/genetics , Liver Neoplasms/complications , Non-alcoholic Fatty Liver Disease/complications , Programmed Cell Death 1 Receptor/metabolism , Up-Regulation , Ribonucleoproteins/deficiency , Ribonucleoproteins/genetics
2.
Cell Death Discov ; 10(1): 48, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272861

ABSTRACT

Glaucoma is a multifactorial neurodegenerative disease characterized by the progressive and irreversible degeneration of the optic nerve and retinal ganglion cells. Despite medical advances aiming at slowing degeneration, around 40% of treated glaucomatous patients will undergo vision loss. It is thus of utmost importance to have a better understanding of the disease and to investigate more deeply its early causes. The transcriptional coactivator YAP, an important regulator of eye homeostasis, has recently drawn attention in the glaucoma research field. Here we show that Yap conditional knockout mice (Yap cKO), in which the deletion of Yap is induced in both Müller glia (i.e. the only retinal YAP-expressing cells) and the non-pigmented epithelial cells of the ciliary body, exhibit a breakdown of the aqueous-blood barrier, accompanied by a progressive collapse of the ciliary body. A similar phenotype is observed in human samples that we obtained from patients presenting with uveitis. In addition, aged Yap cKO mice harbor glaucoma-like features, including deregulation of key homeostatic Müller-derived proteins, retinal vascular defects, optic nerve degeneration and retinal ganglion cell death. Finally, transcriptomic analysis of Yap cKO retinas pointed to early-deregulated genes involved in extracellular matrix organization potentially underlying the onset and/or progression of the observed phenotype. Together, our findings reveal the essential role of YAP in preserving the integrity of the ciliary body and retinal ganglion cells, thereby preventing the onset of uveitic glaucoma-like features.

3.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806372

ABSTRACT

Some life-threatening acute hepatitis originates from drug-induced liver injury (DILI). Carbon tetrachloride (CCl4)-induced acute liver injury in mice is the widely used model of choice to study acute DILI, which pathogenesis involves a complex interplay of oxidative stress, necrosis, and apoptosis. Since the receptor interacting protein kinase-1 (RIPK1) is able to direct cell fate towards survival or death, it may potentially affect the pathological process of xenobiotic-induced liver damage. Two different mouse lines, either deficient for Ripk1 specifically in liver parenchymal cells (Ripk1LPC-KO) or for the kinase activity of RIPK1 (Ripk1K45A, kinase dead), plus their respective wild-type littermates (Ripk1fl/fl, Ripk1wt/wt), were exposed to single toxic doses of CCl4. This exposure led in similar injury in Ripk1K45A mice and their littermate controls. However, Ripk1LPC-KO mice developed more severe symptoms with massive hepatocyte apoptosis as compared to their littermate controls. A pretreatment with a TNF-α receptor decoy exacerbated liver apoptosis in both Ripk1fl/fl and Ripk1LPC-KO mice. Besides, a FasL antagonist promoted hepatocyte apoptosis in Ripk1fl/fl mice but reduced it in Ripk1LPC-KO mice. Thus, the scaffolding properties of RIPK1 protect hepatocytes from apoptosis during CCl4 intoxication. TNF-α and FasL emerged as factors promoting hepatocyte survival. These protective effects appeared to be independent of RIPK1, at least in part, for TNF-α, but dependent on RIPK1 for FasL. These new data complete the deciphering of the molecular mechanisms involved in DILI in the context of research on their prevention or cure.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Hepatitis , Animals , Apoptosis , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Hepatitis/metabolism , Hepatocytes/metabolism , Liver/metabolism , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Cell Rep ; 27(6): 1712-1725.e6, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31067458

ABSTRACT

Contrasting with fish or amphibian, retinal regeneration from Müller glia is largely limited in mammals. In our quest toward the identification of molecular cues that may boost their stemness potential, we investigated the involvement of the Hippo pathway effector YAP (Yes-associated protein), which is upregulated in Müller cells following retinal injury. Conditional Yap deletion in mouse Müller cells prevents cell-cycle gene upregulation that normally accompanies reactive gliosis upon photoreceptor cell death. We further show that, in Xenopus, a species endowed with efficient regenerative capacity, YAP is required for their injury-dependent proliferative response. In the mouse retina, where Müller cells do not spontaneously proliferate, YAP overactivation is sufficient to induce their reprogramming into highly proliferative cells. Overall, we unravel a pivotal role for YAP in tuning Müller cell proliferative response to injury and highlight a YAP-EGFR (epidermal growth factor receptor) axis by which Müller cells exit their quiescence state, a critical step toward regeneration.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle , Ependymoglial Cells/pathology , Neuroglia/pathology , Retinal Degeneration/pathology , Trans-Activators/metabolism , Xenopus Proteins/metabolism , Animals , Cell Cycle/genetics , Cell Proliferation , Ependymoglial Cells/metabolism , Epidermal Growth Factor/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Neuroglia/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retina/metabolism , Retina/pathology , Retinal Degeneration/genetics , Signal Transduction , Transcription, Genetic , Up-Regulation/genetics , Xenopus laevis , YAP-Signaling Proteins
7.
Invest Ophthalmol Vis Sci ; 58(4): 1941-1953, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28384715

ABSTRACT

Purpose: During retinal degeneration, Müller glia cells respond to photoreceptor loss by undergoing reactive gliosis, with both detrimental and beneficial effects. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of new therapeutic strategies. The purpose of this work was to identify new factors involved in Müller cell response to photoreceptor cell death. Methods: Whole transcriptome sequencing was performed from wild-type and degenerating rd10 mouse retinas at P30. The changes in mRNA abundance for several differentially expressed genes were assessed by quantitative RT-PCR (RT-qPCR). Protein expression level and retinal cellular localization were determined by western blot and immunohistochemistry, respectively. Results: Pathway-level analysis from whole transcriptomic data revealed the Hippo/YAP pathway as one of the main signaling pathways altered in response to photoreceptor degeneration in rd10 retinas. We found that downstream effectors of this pathway, YAP and TEAD1, are specifically expressed in Müller cells and that their expression, at both the mRNA and protein levels, is increased in rd10 reactive Müller glia after the onset of photoreceptor degeneration. The expression of Ctgf and Cyr61, two target genes of the transcriptional YAP/TEAD complex, is also upregulated following photoreceptor loss. Conclusions: This work reveals for the first time that YAP and TEAD1, key downstream effectors of the Hippo pathway, are specifically expressed in Müller cells. We also uncovered a deregulation of the expression and activity of Hippo/YAP pathway components in reactive Müller cells under pathologic conditions.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , DNA-Binding Proteins/genetics , Ependymoglial Cells/metabolism , Gene Expression Regulation , Phosphoproteins/genetics , Photoreceptor Cells/metabolism , RNA, Messenger/genetics , Retinal Degeneration/genetics , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/biosynthesis , Animals , Blotting, Western , Cell Cycle Proteins , DNA-Binding Proteins/biosynthesis , Disease Models, Animal , Ependymoglial Cells/pathology , Immunohistochemistry , Mice , Mice, Inbred C57BL , Nuclear Proteins , Phosphoproteins/biosynthesis , Photoreceptor Cells/pathology , Real-Time Polymerase Chain Reaction , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Signal Transduction , TEA Domain Transcription Factors , Transcription Factors/biosynthesis , YAP-Signaling Proteins
8.
Dev Dyn ; 245(7): 727-38, 2016 07.
Article in English | MEDLINE | ID: mdl-26661417

ABSTRACT

Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell-derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self-repair mechanisms in patients, through the recruitment of endogenous cells with stemness properties. Accumulating evidence in the past 15 year0s has revealed that several retinal cell types possess neurogenic potential, thus opening new avenues for regenerative medicine. Among them, Müller glial cells have been shown to be able to undergo a reprogramming process to re-acquire a stem/progenitor state, allowing them to proliferate and generate new neurons for repair following retinal damages. Although Müller cell-dependent spontaneous regeneration is remarkable in some species such as the fish, it is extremely limited and ineffective in mammals. Understanding the cellular events and molecular mechanisms underlying Müller cell activities in species endowed with regenerative capacities could provide knowledge to unlock the restricted potential of their mammalian counterparts. In this context, the present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field. Developmental Dynamics 245:727-738, 2016. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc.


Subject(s)
Ependymoglial Cells/cytology , Ependymoglial Cells/physiology , Retina/cytology , Animals , Ependymoglial Cells/metabolism , Humans , Regeneration/genetics , Regeneration/physiology , Retina/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...