Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 356: 124308, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844040

ABSTRACT

Antibiotics, frequently detected in aquatic ecosystems, can negatively impact the health of resident organisms. Although the study on the possible effects of antibiotics on these organisms has been increasing, there is still little information available on the molecular effects on exposed non-target organisms. In our study we used a label free proteomic approach and sea bream, Sparus aurata, to evaluate the effects of exposure to environmentally relevant concentrations of the antibiotic compounds ciprofloxacin (CIP), sulfadiazine (SULF) and trimethoprim (TRIM) produced at the protein level. Individuals of sea bream were exposed to single compounds at 5.2 ± 2.1 µg L-1 of CIP, 3.8 ± 2.7 µg L-1 of SULF and 25.7 ± 10.8 µg L-1 of TRIM for 21 days. After exposure, the number of differentially expressed proteins in the liver was 39, 73 and 4 for CIP, SULF and TRIM respectively. In the brain, there was no alteration of proteins after CIP and TRIM treatment, while 9 proteins were impacted after SULF treatment. The differentially expressed proteins were involved in cellular biological, metabolic, developmental, growth and biological regulatory processes. Overall, our study evidences the vulnerability of Sparus aurata, after exposure to environmentally relevant concentrations of the major antibiotics CIP, SULF and TRIM and that their chronic exposure could lead to a stress situation, altering the proteomic profile of key organs such as brain and liver.

2.
Sci Total Environ ; 912: 169178, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38072265

ABSTRACT

Ultraviolet filters (UV-filters) are compounds extensively used in personal care products. These compounds are produced at increasing rates and discharged into marine ecosystems in unknown quantities and with no regulation, making them emerging contaminants. Among those, the UV-filter 4-Methylbenzylidene camphor (4-MBC) is used in a variety of personal care products such as sunscreens, soaps, or lipsticks. This high consumption has resulted in its presence in various environmental matrices at in concentrations ranging from ng to µg L-1. Very little is known, however, about the possible adverse effects in exposed non-target organisms. Our study presents novel data on the bioconcentration, toxicokinetics, and molecular effects of 4-MBC in a marine bivalve species of commercial interest, Ruditapes philippinarum (Manila clam). Organisms were exposed at two different concentrations (1.34 and 10.79 µg L-1) of 4-MBC for 7 days, followed by a 3-day depuration period (clean sea waters). Bioconcentration factors (BCF) were 3562 and 2229 L kg-1 for the low and high exposure concentrations, respectively, making this pollutant bioaccumulative according to REACH criteria. Up to six 4-MBC biotransformation products (BTPs)were identified, 2 of them for the first time. Transcriptomic analysis revealed between 658 and 1310 differently expressed genes (DEGs) after 4-MBC exposure. Functional and enrichment analysis of the DEGs showed the activation of the detoxification pathway to metabolize and excrete the bioconcentrated 4-MBC, which also involved energy depletion and caused an impact on the metabolism of carbohydrates and lipids and in the oxidative phosphorylation pathways. Oxidative stress and immune response were also evidenced through the activation of cathepsins and the complement system. Such elucidation of the mode of action of a ubiquitous pollutant such as 4-MBC at the molecular level is valuable both from an environmental point of view and for the sustainable production of Manila clam, one of the most cultivated mollusk species worldwide.


Subject(s)
Bivalvia , Environmental Pollutants , Water Pollutants, Chemical , Animals , Bioaccumulation , Ecosystem , Gene Expression Profiling , Bivalvia/metabolism , Biotransformation , Sunscreening Agents/toxicity , Sunscreening Agents/metabolism , Environmental Pollutants/analysis , Water Pollutants, Chemical/analysis
3.
Environ Pollut ; 316(Pt 2): 120678, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36403875

ABSTRACT

DEET is one of the most frequently detected insect repellents in the environment reaching concentrations of several µg L-1 in surface water. There is scarce information available regarding its mode of action in non-target organisms. Here, we have used an integrated metabolomic and transcriptomic approach to elucidate the possible adverse effects of DEET exposure in the marine fish gilthead sea bream (Sparus aurata). Individuals were exposed at an environmentally relevant concentration of DEET (10 µg L-1) for 22 days in a continuous flow-through system. Transcriptomic analysis revealed 250 differentially expressed genes in liver, while metabolomic analysis identified 190 differentially modulated features in liver and 98 in plasma. Multi-omic data integration and visualization allowed elucidation of the modes of action of DEET exposure, including: energy depletion through the disruption of carbohydrate and amino acids metabolisms, oxidative stress leading to DNA damage, lipid peroxidation, and damage to cell membrane and apoptosis. Activation of xenobiotic pathway as well as the inmune-inflammatory reaction was evidenced in the present work.


Subject(s)
Insect Repellents , Sea Bream , Animals , Transcriptome , DEET , Metabolomics
4.
Ecotoxicol Environ Saf ; 242: 113845, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35809397

ABSTRACT

Pharmaceutical drugs in the aquatic medium may pose significant risk to non-target organisms. In this study, the potential toxicity of a mixture of three compounds commonly detected in marine waters (ibuprofen, ciprofloxacin and flumequine) was assessed, by studying bioaccumulation, oxidative stress and neurotoxicity parameters (catalase CAT, superoxide dismutase SOD, glutathione reductase GR, glutathione S-transferase GST, lipid peroxidation LPO, glutathione peroxidase GPX, metallothionein MT and acetylcholinesterase AChE) in the clam Scrobicularia plana. Temporal evolution of selected endpoints was evaluated throughout an exposure period (1, 7 and 21 days) followed by a depuration phase. The accumulation of all drugs was fast, however clams showed the ability to control the internal content of drugs, keeping their concentration constant throughout the exposure and reducing their content after 7 days of depuration. The induction of biochemical alterations (SOD, CAT, LPO, MT, AChE) was observed in gills and digestive gland probably related to an imbalance in the redox state of clams as a consequence of the exposure to the drug mixture. These alterations were also maintained at the end of the depuration week when the high levels of SOD, CAT, GST and LPO indicated the persistence of oxidative stress and damage to lipids despite the fact that clams were no longer exposed to the mixture.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Acetylcholinesterase/metabolism , Animals , Bioaccumulation , Biomarkers/metabolism , Bivalvia/metabolism , Catalase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation , Oxidative Stress , Pharmaceutical Preparations , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/toxicity
5.
Aquat Toxicol ; 250: 106243, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35872527

ABSTRACT

The high consumption and subsequent input of antibacterial compounds in marine ecosystems has become a worldwide problem. Their continuous presence in these ecosystems allows a direct interaction with aquatic organisms and can cause negative effects over time. The objective of the present study was to evaluate the effects of exposure to three antibacterial compounds of high consumption and presence in marine ecosystems (Ciprofloxacin CIP, Sulfadiazine SULF and Trimethoprim TRIM) on the physiology of the gilthead sea bream, Sparus aurata. Plasma parameters, enzymatic biomarkers of oxidative stress and damage and expression of genes related to stress and growth were assessed in exposed S. aurata specimens. For this purpose, sea bream specimens were exposed to individual compounds at concentrations of 5.2 ± 2.1 µg L-1 for CIP, 3.8 ± 2.7 µg L-1 for SULF and 25.7 ± 10.8 µg L-1 for TRIM during 21 days. Exposure to CIP up-regulated transcription of genes associated with the hypothalamic-pituitary-thyroid (HPT) (thyrotropin-releasing hormone, trh) and hypothalamic-pituitary-interrenal (HPI) axes (corticotropin-releasing hormone-binding protein, crhbp) in the brain, as well as altering several hepatic stress biomarkers (catalase, CAT; glutathione reductase, GR; and lipid peroxidation, LPO). Similar alterations at the hepatic level were observed after exposure to TRIM. Overall, our study indicates that S. aurata is vulnerable to environmentally relevant concentrations of CIP and TRIM and that their exposure could lead to a stress situation, altering the activity of antioxidant defense mechanisms as well as the activity of HPT and HPI axes.


Subject(s)
Perciformes , Sea Bream , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/pharmacology , Biomarkers/metabolism , Ciprofloxacin/metabolism , Ecosystem , Gene Expression , Glutathione Reductase/metabolism , Perciformes/metabolism , Sea Bream/metabolism , Stress, Physiological , Sulfadiazine/metabolism , Sulfadiazine/pharmacology , Trimethoprim/metabolism , Trimethoprim/toxicity , Water Pollutants, Chemical/toxicity
6.
Sci Total Environ ; 803: 150080, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34525742

ABSTRACT

Sulisobenzone (BP-4) is one of the benzophenone type UV filters most frequently detected in aquatic ecosystems. As a suspected endocrine disrupting compound, scarce information is available yet about other molecular effects and its mechanism of action. Here, we used an integrated transcriptomic and metabolomic approach to improve the current understanding on the toxicity of BP-4 towards aquatic species. Gilt-head sea bream individuals were exposed at environmentally relevant concentrations (10 µg L-1) for 22 days. Transcriptomic analysis revealed 371 differentially expressed genes in liver while metabolomic analysis identified 123 differentially modulated features in plasma and 118 in liver. Integration of transcriptomic and metabolomic data showed disruption of the energy metabolism (>10 pathways related to the metabolism of amino acids and carbohydrates were impacted) and lipid metabolism (5 glycerophospholipids and the expression of 3 enzymes were affected), suggesting oxidative stress. We also observed, for the first time in vivo and at environmental relevant concentrations, the disruption of several enzymes involved in the steroid and thyroid hormones biosynthesis. DNA and RNA synthesis was also impacted by changes in the purine and pyrimidine metabolisms. Overall, the multiomic workflow presented here increases the evidence on suspected effects of BP-4 exposure and identifies additional modes of action of the compounds that could have been overlooked by using single omic approaches.


Subject(s)
Sea Bream , Animals , Benzophenones , Ecosystem , Female , Gene Expression Profiling , Humans , Swine
7.
Environ Res ; 200: 111396, 2021 09.
Article in English | MEDLINE | ID: mdl-34062201

ABSTRACT

The knowledge about the effects of pharmaceuticals on aquatic organisms has been increasing in the last decade. However, due to the variety of compounds presents in the aquatic medium, exposure scenarios and exposed organisms, there are still many gaps in the knowledge on how mixtures of such bioactive compounds affect exposed non target organisms. The crayfish Procambarus clarkii was used to analyze the toxicity effects of mixtures of ciprofloxacin, flumequine and ibuprofen at low and high concentrations (10 and 100 µg/L) over 21 days of exposure and to assess the recovery capacity of the organism after a depuration phase following exposure during additional 7 days in clean water. The crayfish accumulated the three compounds throughout the entire exposure in the hepatopancreas. The exposure to the mixture altered the abundance of proteins associated with different cells functions such as biotransformation and detoxification processes (i.e. catalase and glutathione transferase), carbohydrate metabolism and immune responses. Additionally changes in expression of genes encoding antioxidant enzymes and in activity of the corresponding enzymes (i.e. superoxide dismutase, glutathione peroxidase and glutathione transferase) were reported. Alterations at different levels of biological organization did not run in parallel under all circumstances and can be related to changes in the redox status of the target tissue. No differences were observed between control and exposed organisms for most of selected endpoints after a week of depuration, indicating that exposure to the drug mixture did not produce permanent damage in the hepatopancreas of P. clarkii.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Astacoidea , Ciprofloxacin/metabolism , Ciprofloxacin/toxicity , Fluoroquinolones , Hepatopancreas/metabolism , Ibuprofen/toxicity , Multilevel Analysis , Oxidative Stress , Pharmaceutical Preparations/metabolism , Proteomics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
8.
Aquat Toxicol ; 221: 105418, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32078887

ABSTRACT

UV filters are a class of emerging contaminants with an annual estimated production of 10,000 tons worldwide that continuously enter aquatic environments. Among UV filters, 4-methylbenzylidenecamphor (4-MBC) is an organic camphor derivative used in the cosmetic industry for its ability to protect the skin against UV, specifically UV B radiation. Individuals of the Japanese clam, Ruditapes philippinarum, were exposed to 4-MBC at environmentally relevant and slightly higher concentrations (nominal: 0, 1, 10, 100 µg L-1) using a semi-static exposure system over a 7-days period followed by a 3-days depuration period (total 10 days) where no 4-MBC was added to the tanks. Assessed mortality reached up to 100 % at the highest exposure concentration and a LC50 value of 7.71 µg·L-14-MBC was derived. Environmental risk assessment carried out in a site specific environment, the Cadiz bay in the south of Spain, revealed a potential risk produced by the presence of 4-MBC. Digestive glands tissues were analysed for differential expression of genes encoding proteins involved in the stress response (SOD, MT, GST, EIF1, BCL2, TP53, CAT, 18S, GADPH, GPX, GADD45, THIO9) by RT-qPCR for relative quantification. Results showed that the presence of 4-MBC at environmentally relevant concentrations induced the expression of genes that encode for antioxidant enzymes (GST) and for proteins related to the inhibition of apoptosis (BCL2) and cellular stress (GADD), suggesting a physiological stress response.


Subject(s)
Bivalvia/drug effects , Camphor/analogs & derivatives , Environmental Monitoring/methods , Oxidative Stress/drug effects , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Bivalvia/genetics , Camphor/toxicity , Gene Expression/drug effects , Lethal Dose 50 , Risk Assessment , Spain
9.
Chemosphere ; 235: 126-135, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31255752

ABSTRACT

As the exposure of organisms to contaminants can provoke harmful effects, some organisms try to avoid a continuous exposure by using different strategies. The aim of the current study was to assess the ability of the shrimp Palaemon varians to detect a triclosan gradient and escape to less contaminated areas. Two multi-compartmented exposure systems (the linear system and the HeMHAS-Heterogeneous Multi-Habitat Assay System) were used and then results were compared. Finally, it was aimed how sensitive the avoidance response is by comparing it with other endpoints through a sensitivity profile by biological groups and the species sensitive distribution. The distribution of the shrimps along the triclosan gradient was dependent on the concentrations, not exceeding 3% for 54 µg/L in the linear system and 7% for 81 µg/L in the HeMHAS; 25% of organisms preferred the compartment with the lowest concentrations in both systems. Half of the population seems to avoid concentrations around 40-50 µg/L. The triclosan concentration that might start (threshold) to trigger an important avoidance (around 20%) was estimated to be of 18 µg/L. The profile of sensitivity to triclosan showed that avoidance by shrimps was less sensitive than microalgae growth and avoidance by guppy; however, it might occur even at concentrations considered safe for more than 95% of the species. In summary, (i) the HeMHAS proved to be a suitable system to simulate heterogeneous contamination scenarios, (ii) triclosan triggered the avoidance response in P. varians, and (iii) the avoidance was very sensitive compared to other ecotoxicological responses.


Subject(s)
Avoidance Learning/physiology , Escape Reaction/drug effects , Palaemonidae/physiology , Triclosan/toxicity , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Ecotoxicology , Microalgae/physiology , Poecilia/physiology , Seafood , Swimming/physiology , Water Pollutants, Chemical/toxicity
10.
Aquat Toxicol ; 208: 146-156, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30677710

ABSTRACT

The presence of pharmaceuticals in the aquatic ecosystem has become a topic of growing interest in recent years. In this study, the marine clam Ruditapes philippinarum was exposed during 14 days to concentrations close to those found in the environment: (15 µg L-1) of carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBU), three pharmaceuticals widely used worldwide and commonly found within the aquatic environment. Additionally, exposure was followed by a depuration phase (7 days). A battery of biomarkers (superoxide dismutase SOD, catalase CAT, glutathione reductase GR, total glutathione peroxidase T-GPx, glutathione transferase GST, lipid peroxidation LPO, acetylcholinesterase AChE and metallothionein MT) was evaluated throughout the exposure and depuration. The Integrated Biomarker Response index was calculated with all selected biomarkers and used as a complementary tool in the evaluation of the organisms' health status. Exposure induced changes in the clams' biochemical responses that led to the hypothesis of the harmful role of the pharmaceuticals resulting in negative effects (changes in enzyme activities, LPO and MT levels, related to ROS production) particularly after short-term exposure. However, the clams showed the ability to cope with these imbalances by recovering their general oxidative status by the end of exposure.


Subject(s)
Biomarkers/metabolism , Bivalvia/drug effects , Carbamazepine/toxicity , Diclofenac/toxicity , Ibuprofen/toxicity , Acetylcholinesterase/metabolism , Animals , Gills/drug effects , Gills/metabolism , Humans , Lipid Peroxidation/drug effects , Metallothionein/metabolism , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity
11.
Aquat Toxicol ; 199: 285-295, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29702437

ABSTRACT

Copper oxide (CuO) nanoparticles (NPs) are increasingly investigated, developed and produced for a wide range of industrial and consumer products. Notwithstanding their promising novel applications, concern has been raised that their increased use and disposal could consequently increase their release into marine systems and potentially affect species within. To date the understanding of factors and mechanisms of CuO (nano-) toxicity to marine invertebrates is still limited. Hence, we studied the characteristics and behaviour of two commercially available CuO NPs of similar size, but produced employing distinct synthesis methods, under various environmentally and experimentally relevant conditions. In addition, cell viability and DNA damage, as well as gene expression of detoxification, oxidative stress, inflammatory response, DNA damage repair and cell death mediator markers were studied in primary cultures of hemocytes from the marine clam Ruditapes philippinarum and, where applicable, compared to bulk CuO and ionic Cu (as CuSO4) behaviour and effects. We found that the synthesis method can influence particle characteristics and behaviour, as well as the toxicity of CuO NPs to Ruditapes philippinarum hemocytes. Our results further indicate that under the tested conditions aggregating behaviour influences the toxicity of CuO NPs by influencing their rate of extra- and intracellular dissolution. In addition, gene expression analysis identified similar transcriptional de-regulation for all tested copper treatments for the here measured suite of genes. Finally, our work highlights various differences in the aggregation and dissolution kinetics of CuO particles under environmental (marine) and cell culture exposure conditions that need consideration when extrapolating in vitro findings.


Subject(s)
Bivalvia/drug effects , Copper/toxicity , Hemocytes/metabolism , Metal Nanoparticles/toxicity , Animals , Bivalvia/metabolism , Cell Survival/drug effects , Comet Assay , Gene Expression Regulation/drug effects , Hemocytes/cytology , Hemocytes/drug effects , Ions/toxicity , Kinetics , Metal Nanoparticles/ultrastructure , Mutagens/toxicity , Particle Size , Water Pollutants, Chemical/toxicity
12.
Sci Total Environ ; 609: 715-723, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28763668

ABSTRACT

Human and veterinary pharmaceuticals and degradation products are continuously introduced into the environment. To date, there is a lack of information about the effects of pharmaceuticals in spiked toxicity tests with non-target organisms. In this study, we have evaluated the effects of exposure to two common pharmaceuticals in the midge Chironomus riparius in spiked sediment experiments. The selected pharmaceuticals are the nonsteroidal anti-inflammatory drug (NSAID): diclofenac (DF) and the anti-depressant drug carbamazepine (CBZ). In order to assess the effects of the pharmaceuticals, a chronic toxicity test with the midge was carried out. The endpoints survival, growth and developmental stage by means of biomass, were measured after 10days, and emergence rates and sex-ratio (male/female) were measured after 21days of exposure. Significant mortality was observed in organisms at day 10 with a 40% of larvae surviving in the highest exposure concentration of CBZ. DF decreased the emergence ratio with respect to the controls in organisms exposed at concentrations of 34.0µg·g-1 whereas CBZ reduced the growth of the midges (30,6% with respect to the control) and induced a significant change in sex-ratio at concentrations of 31.4µg·g-1. The results obtained in the present study indicate possible adverse effects on aquatic invertebrates, which should be taken into account for environmental risk assessment of pharmaceutical compounds in sediments.


Subject(s)
Carbamazepine/adverse effects , Chironomidae/drug effects , Diclofenac/adverse effects , Geologic Sediments/chemistry , Water Pollutants, Chemical/adverse effects , Animals , Female , Larva , Male , Sex Ratio , Toxicity Tests, Chronic
13.
Mar Environ Res ; 129: 36-45, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28434674

ABSTRACT

Human pharmaceuticals such as Acetaminophen, Atenolol and Carbamazepine are pseudo persistent aquatic pollutants with yet unknown sub-lethal effects at environmentally relevant concentrations. Gilthead seabream (Sparus aurata) were exposed to Acetaminophen: 31.90 ± 11.07 µg L-1; Atenolol: 0.95 ± 0.38 µg L-1 and Carbamazepine: 6.95 ± 0.13 µg L-1 in a 28 day flow through experiment to (1) determine whether exposure to low concentrations in the µg·L-1 range of the pharmaceuticals alters the brain transcriptome and, (2) identify different expression profiles and treatment specific modes of action and pathways. Despite low exposure concentrations, 411, 7 and 612 differently expressed transcripts were identified in the individual treatments with Acetaminophen, Atenolol and Carbamazepine, respectively. Functional analyses of differentially expressed genes revealed a significant over representation of several biological processes, cellular compartment features and molecular functions for both Acetaminophen and Carbamazepine treatments. Overall, the results obtained in seabream brain suggest similar physiological responses to those observed in humans also at environmental concentrations, as well as the existence of treatment specific processes that may be useful for the development of biomarkers of contamination.


Subject(s)
Fish Proteins/genetics , Pharmaceutical Preparations/metabolism , Sea Bream/physiology , Transcriptome/physiology , Water Pollutants, Chemical/toxicity , Acetaminophen/toxicity , Animals , Atenolol/toxicity , Biomarkers/metabolism , Brain/metabolism , Carbamazepine/toxicity , Fish Proteins/metabolism , Gene Expression Profiling
14.
Aquat Toxicol ; 185: 86-94, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28189915

ABSTRACT

The appropriate selection of reference genes for the normalization of non-biological variance in reverse transcription real-time quantitative PCR (RT-qPCR) is essential for the accurate interpretation of the collected data. The use of multiple validated reference genes has been shown to substantially increase the robustness of the normalization. It is therefore considered good practice to validate putative genes under specific conditions, determine the optimal number of genes to be employed, and report the method or methods used. Under this premise, we assessed the current state of reference gene based normalization in RT-qPCR bivalve ecotoxicology studies (post 2011), employing a systematic quantitative literature review. A total of 52 papers met our criteria and were analysed for genes used, the use of multiple reference genes, as well as the validation method employed. We further critically discuss methods for reference gene validation based on a case study using copper exposed primary hemocytes from the marine bivalve Ruditapes philippinarum; including the established algorithms geNorm, NormFinder and BestKeeper, as well as the popular online tool RefFinder. We identified that RT-qPCR normalization is largely performed using single reference genes, while less than 40% of the studies attempted to experimentally validate the expression stability of the genes used. 18s rRNA and ß-Actin were the most popular genes, yet their un-validated use did introduce artefactual variance that altered the interpretation of the resulting data. Our findings further suggest that combining the results from multiple individual algorithms and calculating the overall best-ranked gene, as computed by the RefFinder tool, does not by default lead to the identification of the most suitable reference genes.


Subject(s)
Aquatic Organisms/genetics , Bivalvia/genetics , Copper/toxicity , Ecotoxicology/methods , Hemocytes/metabolism , Real-Time Polymerase Chain Reaction/methods , Animals , Aquatic Organisms/drug effects , Biomarkers/metabolism , Bivalvia/drug effects , Cathepsin D/genetics , Cathepsin D/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Hemocytes/drug effects , Humans , RNA/genetics , RNA/metabolism , Reference Standards , Reproducibility of Results , Software , Water Pollutants, Chemical/toxicity
15.
Chemosphere ; 155: 319-328, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27135693

ABSTRACT

The individual and combined toxicities of acetaminophen, carbamazepine, diclofenac and ibuprofen have been examined in neonate nauplii (<24 h-old) of the harpacticoid copepod Tisbe battagliai. Based on acute toxicity data (LC50) obtained, diclofenac was the most toxic compound with an LC50 value of 9.5 mg·L(-1); this is between 5 and 7 times lower than the LC50 value for acetaminophen, carbamazepine and ibuprofen (67.8 mg·L(-1), 59 mg·L(-1) and 49.7 mg·L(-1) respectively). The environmental risk posed by the selected pharmaceuticals was assessed by calculating risk quotients (RQs) based on MEC (the highest exposure concentration of the compound in the medium)/PNEC (predicted no effect concentration) ratios. Results suggest that, at environmental concentrations, none of the compounds is harmful for the aquatic environment (low or no risk). Toxicity data obtained for mixtures were compared with predictions derived from three different models: Concentration Addition (CA), Independent Action (IA) and Combination Index (CI). The classical modeling approaches CA and IA failed to predict the observed mixture toxicity, thus indicating that single compound toxicity data are not sufficient to predict toxicity of drug mixtures on Tisbe species. However, the use of the CI seems to provide better predictions of pharmaceutical toxicity.


Subject(s)
Copepoda/drug effects , Pharmaceutical Preparations , Water Pollutants, Chemical/toxicity , Acetaminophen/toxicity , Animals , Carbamazepine/toxicity , Copepoda/physiology , Diclofenac/toxicity , Ibuprofen/toxicity , Toxicity Tests, Acute , Water Pollutants, Chemical/analysis
16.
J Hazard Mater ; 313: 159-69, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27060865

ABSTRACT

Lethal and sublethal responses of the shrimp Atyaephyra desmarestii exposed to three pharmaceutical compounds, Diclofenac (DF), Ibuprofen (IB) and Carbamazepine (CBZ), individually and in mixtures, were evaluated under two temperature scenarios. LC50 (96h) values were obtained individually at 20° and 25°C. At 25°C, mortality in binary and ternary mixtures is higher than at 20°C. The toxicity of the mixtures was predicted on the basis of individual mortality data using two toxicity models: Concentration addition (CA) and Independent action (IA). Our results showed that neither CA nor IA unequivocally predicted the observed toxicity of binary and ternary mixtures. For sublethal toxicity, selected endpoints were: ingestion rate, osmoregulatory capacity and respiration rate. Regarding osmoregulatory capacity, no significant differences were found. The highest ingestion rates were recorded in organisms exposed at 25°C, irrespective of the compound, after 30 and 60min of exposure. At 20°C, there was a significant decrease in respiration rate (Dunnett́s test p<0.05) under conditions of severe anoxia (1mg O2L(-1)) in organisms exposed to 13.3µgL(-1) of DF. At 25°C a significantly lower respiration rate with respect to the control (Dunnett́s test p<0.05) was found in organisms exposed to 13.8µgL(-1) of CBZ under conditions of moderate hypoxia and well-oxygenated water (3 and 5mg O2L(-1), respectively). The respiratory independence of organisms exposed to the higher temperature (25°C) also decreased. This study shows that CBZ and DF individually, even at relatively low concentrations, may produce respiratory deficiencies in the freshwater shrimp, Atyaephyra desmarestii under certain temperature and water oxygenation conditions, thus reducing its ability to function.


Subject(s)
Carbamazepine/toxicity , Decapoda/drug effects , Diclofenac/toxicity , Ibuprofen/toxicity , Temperature , Water Pollutants, Chemical/toxicity , Animals
17.
Sci Total Environ ; 540: 260-6, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26163379

ABSTRACT

Few ecotoxicological studies incorporate within the experimental design environmental variability and mixture effects when assessing the impact of pollutants on organisms. We have studied the combined effects of selected pharmaceutical compounds and environmental variability in terms of salinity and temperature on survival, development and body mass of larvae of the estuarine shrimp Palaemon longirostris. Drug residues found in coastal waters occur as mixture, and the evaluation of combined effects of simultaneously occurring compounds is indispensable for their environmental risk assessment. All larval stages of P. longirostris were exposed to the nonsteroidal anti-inflammatory drug (NSAID) diclofenac sodium (DS: 40 and 750 µg L(-1)), the lipid regulator clofibric acid (CA: 17 and 361 µg L(-1)) and the fungicide clotrimazole (CLZ: 0.14 and 4 µg L(-1)). We observed no effect on larval survival of P. longirostris with the tested pharmaceuticals. However, and in contrast to previous studies on larvae of the related marine species Palaemon serratus, CA affected development through an increase in intermoult duration and reduced growth without affecting larval body mass. These developmental effects in P. longirostris larvae were similar to those observed in the mixture of DS and CA confirming the toxic effects of CA. In the case of CLZ, its effects were similar to those observed previously in P. serratus: high doses affected development altering intermoult duration, tended to reduce the number of larval instars and decreased significantly the growth rate. This study suggests that an inter-specific life histories approach should be taken into account to assess the effect of emergent compounds in coastal waters.


Subject(s)
Larva/drug effects , Pharmaceutical Preparations , Water Pollutants, Chemical/toxicity , Animals , Clofibric Acid/toxicity , Clotrimazole/toxicity , Diclofenac/toxicity , Dose-Response Relationship, Drug , Life Cycle Stages , Palaemonidae/physiology
19.
Environ Sci Pollut Res Int ; 22(22): 17414-24, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25994271

ABSTRACT

Gold nanoparticles (AuNPs) are considered an important nano-sized component of the twenty-first century. Due to their unique physical and chemical properties, they are being used and developed for a wide range of promising applications in medicine, biology and chemistry. Notwithstanding their useful aspects, in recent years concern has been raised over their ability to enter cells, organelles and nuclei and provoke oxidative stress. In a laboratory-based experiment, the non-target marine bivalve Ruditapes philippinarum was used as a model organism. Uptake, elimination and molecular effects under short-term and sub-chronic exposure conditions to an environmental relevant concentration (0.75 µg L(-1)) of weakly agglomerating citrate AuNPs (∼20 nm) were studied. Our results demonstrate that at the tested concentration, the particles are readily taken up into the digestive gland > gills and can produce significant changes (p < 0.05) in oxidative stress and inflammatory response markers, as measured by phase II antioxidant enzymes and q-PCR gene expression analysis. However, the overall magnitude of responses was low, and oxidative damage was not provoked. Further, a significant elimination of Au from the digestive tract within a 7-day purification period was observed, with excretion being an important pathway. In conclusion, short-term and sub-chronic exposure to an environmental relevant concentration of citrate-stabilized AuNPs cannot be considered toxic to our model organism, while some further consideration should be given to chronic exposure effects.


Subject(s)
Bivalvia/drug effects , Citric Acid/toxicity , Gold/toxicity , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Animals
20.
Sci Total Environ ; 503-504: 269-78, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25046984

ABSTRACT

According to the European Water Framework Directive (WFD), assessment of surface water status is based on ecological and chemical status that is not always in coherence. In these situations, ecotoxicity tests could help to obtain a better characterization of the ecosystems. The general aim of this work is to design a methodology to study the ecotoxicological status of freshwater systems. This could be useful and complementary to ecological status, for a better ecological characterization of freshwater systems. For this purpose, sediments from thirteen sampling sites within the Ebro river watershed (NE Spain) were collected for ecotoxicity characterization. The ecotoxicity of pore water has been evaluated employing the test organisms Vibrio fischeri, Pseudokirschneriella subcapitata and Daphnia magna, while whole sediment ecotoxicity was evaluated using Vibrio fischeri, Daphnia magna, Nitzschia palea and Chironomus riparius. An analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) was performed to evaluate the sediment toxicity associated to bioavailable metals. Moreover, data about priority pollutants defined by the WFD in water, sediment and fish as well as data of surface water status of each sampling point were provided by the Monitoring and Control Program of the Ebro Water bodies. In general terms, whole sediment bioassays have shown more toxicity than pore water tests. Among the different organisms used, P. subcapitata and C. riparius were the most sensitive in pore water and whole sediment, respectively. Our evaluation of the ecotoxicological status showed high coincidences with the ecological status, established according to the WFD, especially when ecosystem disruption due to numerous stressors (presence of metals and organic pollution) was observed. These results allow us to confirm that, when chemical stressors affect the ecosystem functioning negatively, an ecotoxicological approach, provided by suitable bioassays in pore water and whole sediment, could detect these changes with accurate sensitivity.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri , Animals , Daphnia , Ecotoxicology , Fishes , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...