Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793819

ABSTRACT

Ultrafast X-ray computed tomography is an advanced imaging technique for multiphase flows. It has been used with great success for studying gas-liquid as well as gas-solid flows. Here, we apply this technique to analyze density-driven particle segregation in a rotating drum as an exemplary use case for analyzing industrial particle mixing systems. As glass particles are used as the denser of two granular species to be mixed, beam hardening artefacts occur and hamper the data analysis. In the general case of a distribution of arbitrary materials, the inverse problem of image reconstruction with energy-dependent attenuation is often ill-posed. Consequently, commonly known beam hardening correction algorithms are often quite complex. In our case, however, the number of materials is limited. We therefore propose a correction algorithm simplified by taking advantage of the known material properties, and demonstrate its ability to improve image quality and subsequent analyses significantly.

2.
Sensors (Basel) ; 24(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38676186

ABSTRACT

We present a modular and cost-effective gamma ray computed tomography system for multiphase flow investigations in industrial apparatuses. It mainly comprises a 137Cs isotopic source and an in-house-assembled detector arc, with a total of 16 scintillation detectors, offering a quantum efficiency of approximately 75% and an active area of 10 × 10 mm2 each. The detectors are operated in pulse mode to exclude scattered gamma photons from counting by using a dual-energy discrimination stage. Flexible application of the computed tomography system, i.e., for various object sizes and densities, is provided by an elaborated detector arc design, in combination with a scanning procedure that allows for simultaneous parallel beam projection acquisition. This allows the scan time to be scaled down with the number of individual detectors. Eventually, the developed scanner successfully upgrades the existing tomography setup in the industry. Here, single pencil beam gamma ray computed tomography is already used to study hydraulics in gas-liquid contactors, with inner diameters of up to 440 mm. We demonstrate the functionality of the new system for radiographic and computed tomographic scans of DN110 and DN440 columns that are operated at varying iso-hexane/nitrogen liquid-gas flow rates.

3.
Sensors (Basel) ; 23(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37112408

ABSTRACT

Real-time monitoring of gas-liquid pipe flow is highly demanded in industrial processes in the chemical and power engineering sectors. Therefore, the present contribution describes the novel design of a robust wire-mesh sensor with an integrated data processing unit. The developed device features a sensor body for industrial conditions of up to 400 °C and 135 bar as well as real-time processing of measured data, including phase fraction calculation, temperature compensation and flow pattern identification. Furthermore, user interfaces are included via a display and 4…20 mA connectivity for the integration into industrial process control systems. In the second part of the contribution, we describe the experimental verification of the main functionalities of the developed system. Firstly, the calculation of cross-sectionally averaged phase fractions along with temperature compensation was tested. Considering temperature drifts of up to 55 K, an average deviation of 3.9% across the full range of the phase fraction was found by comparison against image references from camera recordings. Secondly, the automatic flow pattern identification was tested in an air-water two-phase flow loop. The results reveal reasonable agreement with well-established flow pattern maps for both horizontal and vertical pipe orientations. The present results indicate that all prerequisites for an application in industrial environments in the near future are fulfilled.

4.
J Colloid Interface Sci ; 640: 940-948, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36907154

ABSTRACT

HYPOTHESIS: When a droplet starts sliding on a solid surface, the droplet-solid friction force develops in a manner comparable to the solid-solid friction force, showing a static regime and a kinetic regime. Today, the kinetic friction force that acts on a sliding droplet is well-characterized. But the mechanism underlying the static friction force is still less understood. Here we hypothesize that we can further draw an analogy between the detailed droplet-solid and solid-solid friction law, i.e., the static friction force is contact area dependent. METHODS: We deconstruct a complex surface defect into three primary surface defects (atomic structure, topographical defect, and chemical heterogeneity). Using large-scale Molecular Dynamics simulations, we study the mechanisms of droplet-solid static friction forces induced by primary surface defects. FINDINGS: Three element-wise static friction forces related to primary surface defects are revealed and the corresponding mechanisms for the static friction force are disclosed. We find that the static friction force induced by chemical heterogeneity is contact line length dependent, while the static friction force induced by atomic structure and topographical defect is contact area dependent. Moreover, the latter causes energy dissipation and leads to a wiggle movement of the droplet during the static-kinetic friction transition.

5.
J Colloid Interface Sci ; 630(Pt A): 813-822, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36279840

ABSTRACT

HYPOTHESIS: Young contact angle is widely applied to evaluate liquid wetting phenomena on solid surfaces. For example, it gives a truncated-spherical shape prediction of a droplet profile through the Young-Laplace equation. However, recent measurements have shown deviations between microscopic droplet profiles and the spherical shape, indicating that the conventional Young contact angle is insufficient to describe microscopic wetting phenomena. In this work, we hypothesize that a liquid-gas interface nano-bending, which is caused by the nonlinear coupling between the effects of the microscopic interface geometry and solid-liquid interactions, is responsible for this deviation. SIMULATION AND THEORY: Using molecular dynamics simulations and mathematical modeling, we reveal the structure of the nano-bending and the mechanism of the nonlinear-coupled effect. We further apply our findings to illustrate a liquid microlayer with the saddle-shaped profile in nucleate boiling. FINDINGS: The nonlinear-coupled effect is responsible for the deviation of a nano-droplet profile and also the very thin microlayer captured by different experiments. The saddle-shaped interface significantly highlights the nonlinear-coupled effect. The interface nano-bending, rather than the Young contact angle, acts as the boundary condition and dictates the liquid wetting system, especially for the case with high interface curvature. These findings provide insight into recent nano-scale droplet- and bubble-related wetting phenomena.

6.
Materials (Basel) ; 15(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36234104

ABSTRACT

In many energy and process engineering systems where fluids are processed, droplet-laden gas flows may occur. As droplets are often detrimental to the system's operation, they need to be removed. Compact engineering solutions for the removal of entrained droplets are difficult to achieve with conventional flow control and heat transfer approaches and thus droplet removal devices are hence often costly and bulky. In this study, we analyzed the potential of a compact technology based on droplet capture and in situ evaporation by microwave heating. For that, we designed a microwave applicator containing a porous droplet separator for capturing and evaporating droplets. The application of open-cell ceramic foams as filter medium reduced 99.9% of the volumetric flow of droplets, while additional microwave exposure increases reduction to 99.99%. In addition, microwave-heated foams prevent droplet re-entrainment and structure-borne liquid accumulation within foams, thus avoiding water clogging and flooding.

7.
Sensors (Basel) ; 22(12)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35746224

ABSTRACT

The performance of multiphase flow processes is often determined by the distribution of phases inside the equipment. However, controllers in the field are typically implemented based on flow variables, which are simpler to measure, but indirectly connected to performance (e.g., pressure). Tomography has been used in the study of the distribution of phases of multiphase flows for decades, but only recently, the temporal resolution of the technique was sufficient for real-time reconstructions of the flow. Due to the strong connection between the performance and distribution of phases, it is expected that the introduction of tomography to the real-time control of multiphase flows will lead to substantial improvements in the system performance in relation to the current controllers in the field. This paper uses a gas-liquid inline swirl separator to analyze the possibilities and limitations of tomography-based real-time control of multiphase flow processes. Experiments were performed in the separator using a wire-mesh sensor (WMS) and a high-speed camera to show that multiphase flows have two components in their dynamics: one intrinsic to its nonlinear physics, occurring independent of external process disturbances, and one due to process disturbances (e.g., changes in the flow rates of the installation). Moreover, it is shown that the intrinsic dynamics propagate from upstream to inside the separator and can be used in predictive and feedforward control strategies. In addition to the WMS experiments, a proportional-integral feedback controller based on electrical resistance tomography (ERT) was implemented in the separator, with successful results in relation to the control of the distribution of phases and impact on the performance of the process: the capture of gas was increased from 76% to 93% of the total gas with the tomography-based controller. The results obtained with the inline swirl separator are extended in the perspective of the tomography-based control of quasi-1D multiphase flows.

8.
Sensors (Basel) ; 22(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336477

ABSTRACT

With the ongoing digitalization of industry, imaging sensors are becoming increasingly important for industrial process control. In addition to direct imaging techniques such as those provided by video or infrared cameras, tomographic sensors are of interest in the process industry where harsh process conditions and opaque fluids require non-intrusive and non-optical sensing techniques. Because most tomographic sensors rely on complex and often time-multiplexed excitation and measurement schemes and require computationally intensive image reconstruction, their application in the control of highly dynamic processes is often hindered. This article provides an overview of the current state of the art in fast process tomography and its potential for use in industry.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods
9.
Materials (Basel) ; 15(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35329617

ABSTRACT

This paper proposes a new approach to relate the effective thermal conductivity of open-cell solid foams to their porosity. It is based on a recently published approach for estimating the dielectric permittivity of isotropic porous media. A comprehensive assessment was performed comparing the proposed mixing relation with published experimental data for thermal conductivity and with numerical data from state-of-the-art relations. The mixing relation for the estimation of thermal conductivities based on dodecahedrons as building blocks shows good agreement with experimental data over a wide range of porosity.

10.
Materials (Basel) ; 14(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34885601

ABSTRACT

Open-cell solid foams are rigid skeletons that are permeable to fluids, and they are used as direct heaters or thermal dissipaters in many industrial applications. Using susceptors, such as dielectric materials, for the skeleton and exposing them to microwaves is an efficient way of heating them. The heating performance depends on the permittivity of the skeleton. However, generating a rigorous description of the effective permittivity is challenging and requires an appropriate consideration of the complex skeletal foam morphology. In this study, we propose that Platonic solids act as building elements of the open-cell skeletal structures, which explains their effective permittivity. The new, simplistic geometrical relation thus derived is used along with electromagnetic wave propagation calculations of models that represent real foams to obtain a geometrical, parameter-free relation, which is based only on foam porosity and the material's permittivity. The derived relation facilitates an efficient and reliable estimation of the effective permittivity of open-cell foams over a large range of porosity.

11.
Sensors (Basel) ; 20(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322453

ABSTRACT

Wire-mesh sensors are well-established scientific instruments for measuring the spatio-temporal phase distribution of two-phase flows based on different electrical conductivities of the phases. Presently, these instruments are also applied in industrial processes and need to cope with dynamic operating conditions increasingly. However, since the quantification of phase fractions is achieved by normalizing signals with respect to a separately recorded reference measurement, the results are sensitive to temperature differences in any application. Therefore, the present study aims at proposing a method to compensate temperature effects in the data processing procedure. Firstly, a general approach is theoretically derived from the underlying measurement principle and compensation procedures for the electrical conductivity from literature models. Additionally, a novel semi-empirical model is developed on the basis of electrochemical fundamentals. Experimental investigations are performed using a single-phase water loop with adjustable fluid temperature in order to verify the theoretical approach for wire-mesh sensor applications and to compare the different compensation models by means of real data. Finally, the preferred model is used to demonstrate the effect of temperature compensation with selected sets of experimental two-phase data from a previous study. The results are discussed in detail and show that temperature effects need to be handled carefully-not merely in industrial applications, but particularly in laboratory experiments.

12.
Sensors (Basel) ; 20(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927846

ABSTRACT

In this paper, a smart detector design for novel multi-plane ultrafast electron beam X-ray computed tomography is presented. The concept is based on multi-plane electron beam scanning on a transparent X-ray target and elongated cuboid-shape scintillation detectors for radiation detection over an extended axial scanning range. The optical part of the scintillation detector acts as both an X-ray sensitive scintillator with a fast time response and a light guide. With that, we reduce detector complexity, number of detector elements, overall power consumption, and detector costs. We investigated the performance of this new multi-plane detector design with an evaluation detector setup that is made of cerium doped lutetium yttrium oxyorthosilicate (LYSO:Ce) as scintillation material and an avalanche photodiode (APD) array. Thereby, we assessed two design variants: A monolithic LYSO bar detector and a sandwich detector made of multiple LYSO crystals and glass light-guides. Both types reveal excellent linear detector responses, long-term stabilities, and comparable signal qualities.

13.
Soft Matter ; 16(3): 695-702, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31815273

ABSTRACT

The attachment of solid particles to the surface of immersed gas bubbles plays a fundamental role in surface science, and hence plays key roles in various engineering fields ranging from industrial separation processes to the fabrication of functional materials. However, detailed investigation from a microscopic view on how a single particle attaches to a bubble surface and how the particle properties affect the attachment behavior has been so far scarcely addressed. Here, we observed the attachment of a single particle to a bubble surface using a high-speed camera and systematically investigated the effects of the wettability and shape of particles. We found that hydrophobic particles abruptly "jumped into" the bubble while sliding down the bubble surface to eventually satisfy their static contact angles, the behavior of which induced a much stronger attachment to the bubble surface. Interestingly, the determinant factor for the attachment efficiency of spherical particles was not the wettability of the spherical particles but the location of the initial collision with the bubble surface. In contrast, the attachment efficiency of anisotropically-shaped particles was found to increase with the hydrophobicity caused by a larger contact area to the bubble surface. Last but not least, a simple formulation is suggested to recover the contact angle based on the jump-in behavior.

14.
Rev Sci Instrum ; 89(7): 073111, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068132

ABSTRACT

Computed tomography (CT) is known for giving cross-sectional images of a body. As tomographic scans require mechanical movement of components, data acquisition is commonly too slow to capture dynamic processes, which are faster than the acquisition time for a single image. Time-averaged angle-resolved CT imaging is a more recent method, which has demonstrated a capability to sharply image fast rotating machinery components by synchronizing data acquisition with rotation. However, in this modality, all information on static parts disappears. In this paper, a novel data acquisition approach is introduced that combines both CT imaging methods. Eventually, the developed method is exemplarily applied to the study of gas-liquid flow in an industrial centrifugal pump using high-resolution gamma-ray tomography imaging.

15.
Sensors (Basel) ; 17(7)2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28753947

ABSTRACT

A novel thermal anemometry grid sensor was developed for the simultaneous measurement of cross-sectional temperature and axial velocity distribution in a fluid flow. The sensor consists of a set of platinum resistors arranged in a regular grid. Each platinum resistor allows the simultaneous measurement of fluid temperature via electrical resistance and flow velocity via constant voltage thermal anemometry. Cross-sectional measurement was enabled by applying a special multiplexing-excitation scheme. In this paper, we present the design and characterization of a prototypical sensor for measurements in a range of very low velocities.

16.
Phys Rev E ; 95(6-1): 063107, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709228

ABSTRACT

A consistent formulation is presented for the direct numerical simulation of an arbitrarily shaped colloidal particle at a deformable fluidic interface. The rigid colloidal particle is decomposed into a collection of solid spherical beads and the three-phase boundaries are replaced with smoothly spreading interfaces. The major merit of the present formulation lies in the ease with which the geometrical decomposition of the colloidal particle is implemented, yet allows the dynamic simulation of intricate three-dimensional colloidal shapes in a binary fluid. The dynamics of a rodlike, a platelike, and a ringlike particle are presently tested. It is found that platelike particles attach more rapidly to a fluidic interface and are subsequently harder to dislodge when subject to an external force. Using the Bond number, i.e., the ratio of the gravitational force to the reference capillary force, a spherical particle with equal affinity for the two fluids breaks away from a fluidic interface at the critical value Bo=0.75. This value is in line with our numerical experiments. It is here shown that a plate and a ring of equivalent masses detach at greater critical Bond numbers approximately equal to Bo=1.3. Results of this study will find applications in the stabilization of emulsions by colloids and in the recovery of colloidal particles by rising bubbles.

17.
J Chromatogr A ; 1458: 126-35, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27378248

ABSTRACT

The partial oxidation of isobutane to t-butyl hydroperoxide (TBHP) has been studied analytically for the first time as a two-phase process in a capillary micro reactor. In order to obtain detailed information on products, yields, selectivities and reaction pathways, the products have been investigated by GC/MS. An Rxi-5ms column and a PTV-injector have been used to analyze the liquid products. TBHP, di-t-butyl peroxide (DTBP), t-butanol (TBA), and propanone as main products as well as further by-products e.g. methanal, isopropanol, isobutanol and isobutanal in minor quantities have been identified by MS. The liquid products have been obtained by quenching the reaction and vaporizing the isobutane afterwards by pressure reduction using a mass flow controller allowing a constant mass flow. For all liquid reaction products calibrations, a validation of the method including limits of quantification and detection as well as calculation of uncertainties has been performed. The results have been applied successfully for the investigation of the selectivities of the main products (TBHP, DTBP, TBA, propanone) of the isobutane oxidation. In the frame of the analytical investigation of this reaction a correlation coefficient of r(2)>0.999 for TBHP and DTBP, which is necessary to perform a validation, has been obtained for the first time. The gaseous phase has been analyzed using a GASPRO column, a DEANS switch, a mole sieve column and a TCD detector. Apart from the gaseous reactants, isobutene has been found.


Subject(s)
Butanes/chemistry , Gas Chromatography-Mass Spectrometry/methods , Butanols/analysis , Butanols/chemistry , Gases/analysis , Gases/chemistry , Oxidation-Reduction , Peroxides/analysis , Peroxides/chemistry , Pressure , Propane/analogs & derivatives , Propane/analysis , Propane/chemistry , Volatilization
18.
Philos Trans A Math Phys Eng Sci ; 373(2043)2015 Jun 13.
Article in English | MEDLINE | ID: mdl-25939622

ABSTRACT

Ultrafast X-ray computed tomography (CT) is an imaging technique with high potential for the investigation of the hydrodynamics in multiphase flows. For correct determination of the phase distribution of such flows, a high accuracy of the reconstructed image data is essential. In X-ray CT, radiation scatter may cause disturbing artefacts. As the scattering is not considered in standard reconstruction algorithms, additional methods are necessary to correct the detector readings or to prevent the detection of scattered photons. In this paper, we present an analysis of the scattering background for the ultrafast X-ray CT imaging system ROFEX at the Helmholtz-Zentrum Dresden-Rossendorf and propose a correction technique based on collimation and deterministic simulation of first-order scattering.

19.
Chem Eng Technol ; 38(11): 1940-1946, 2015 11.
Article in English | MEDLINE | ID: mdl-27570374

ABSTRACT

The identification of the main flow regime boundaries in bubble columns is essential since the degrees of mixing and mass and heat transfer vary with the flow regime. In this work, a new statistical parameter was extracted from the time series of the cross-sectional averaged gas holdup. The measurements were performed in bubble columns by means of conductivity wire-mesh sensors at very high sampling frequency. The columns were operated with an air/deionized water system under ambient conditions. As a flow regime indicator, a new dimensionless statistical parameter called "relative maximum number of visits in a region" was introduced. This new parameter is a function of the difference between the maximum numbers of visits in a region, calculated from two different division schemes of the signal range.

20.
Sensors (Basel) ; 13(2): 1593-602, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23353141

ABSTRACT

This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.

SELECTION OF CITATIONS
SEARCH DETAIL
...