Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36472907

ABSTRACT

Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.


Subject(s)
Angiotensin II , Mesenteric Artery, Superior , Male , Female , Mice , Animals , Mesenteric Artery, Superior/metabolism , Angiotensinogen , Losartan , Signal Transduction , Low Density Lipoprotein Receptor-Related Protein-1/metabolism
2.
Am J Respir Cell Mol Biol ; 66(2): 146-157, 2022 02.
Article in English | MEDLINE | ID: mdl-34668840

ABSTRACT

Some previous studies in tissue fibrosis have suggested a profibrotic contribution from elevated expression of a protein termed either RGCC (regulator of cell cycle) or RGC-32 (response gene to complement 32 protein). Our analysis of public gene expression datasets, by contrast, revealed a consistent decrease in RGCC mRNA levels in association with pulmonary fibrosis. Consistent with this observation, we found that stimulating primary adult human lung fibroblasts with transforming growth factor (TGF)-ß in cell cultures elevated collagen expression and simultaneously attenuated RGCC mRNA and protein levels. Moreover, overexpression of RGCC in cultured lung fibroblasts attenuated the stimulating effect of TGF-ß on collagen levels. Similar to humans with pulmonary fibrosis, the levels of RGCC were also decreased in vivo in lung tissues of wild-type mice challenged with bleomycin in both acute and chronic models. Mice with constitutive RGCC gene deletion accumulated more collagen in their lungs in response to chronic bleomycin challenge than did wild-type mice. RNA-Seq analyses of lung fibroblasts revealed that RGCC overexpression alone had a modest transcriptomic effect, but in combination with TGF-ß stimulation, induced notable transcriptomic changes that negated the effects of TGF-ß, including on extracellular matrix-related genes. At the level of intracellular signaling, RGCC overexpression delayed early TGF-ß-induced Smad2/3 phosphorylation, elevated the expression of total and phosphorylated antifibrotic mediator STAT1, and attenuated the expression of a profibrotic mediator STAT3. We conclude that RGCC plays a protective role in pulmonary fibrosis and that its decline permits collagen accumulation. Restoration of RGCC expression may have therapeutic potential in pulmonary fibrosis.


Subject(s)
Fibroblasts/metabolism , Lung/metabolism , Nuclear Proteins/physiology , Pulmonary Fibrosis/prevention & control , Smad2 Protein/metabolism , Transforming Growth Factor beta3/metabolism , Animals , Cell Cycle , Cells, Cultured , Female , Fibroblasts/pathology , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Phosphorylation , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Smad2 Protein/genetics , Transcriptome , Transforming Growth Factor beta3/genetics
3.
Sleep ; 45(3)2022 03 14.
Article in English | MEDLINE | ID: mdl-34477210

ABSTRACT

Gonadal steroids and gender are risk factors for sleep disruptions and insomnia in women. However, the relationship between ovarian steroids and sleep is poorly understood. In rodent models, estradiol (E2) suppresses sleep in females suggesting that E2 may reduce homeostatic sleep need. The current study investigates whether E2 decreases sleep need and the potential mechanisms that govern E2 suppression of sleep. Our previous findings suggest that the median preoptic nucleus (MnPO) is a key nexus for E2 action on sleep. Using behavioral, neurochemical, and pharmacological approaches, we tested whether (1) E2 influenced the sleep homeostat and (2) E2 influenced adenosine signaling in the MnPO of adult female rats. In both unrestricted baseline sleep and recovery sleep from 6-h sleep deprivation, E2 significantly reduced nonrapid eye movement (NREM) sleep-delta power, NREM-slow wave activity (NREM-SWA, 0.5-4.0 Hz), and NREM-delta energy suggesting that E2 decreases homeostatic sleep need. However, coordinated with E2-induced changes in physiological markers of homeostatic sleep was a marked increase in MnPO extracellular adenosine (a molecular marker of homeostatic sleep need) during unrestricted and recovery sleep in E2-treated but not oil control animals. While these results seemed contradictory, systemically administered E2 blocked the ability of CGS-21680 (adenosine A2A receptor agonist) microinjected into the MnPO to increase NREM sleep suggesting that E2 may block adenosine signaling. Together, these findings provide evidence that E2 may attenuate the local effects of the A2A receptors in the MnPO, which in turn may underlie estrogenic suppression of sleep behavior as well as changes in homeostatic sleep need.


Subject(s)
Estradiol , Eye Movements , Animals , Electroencephalography , Estradiol/pharmacology , Female , Rats , Sleep/physiology , Sleep Deprivation/complications
4.
Cell Immunol ; 357: 104203, 2020 11.
Article in English | MEDLINE | ID: mdl-32977155

ABSTRACT

IL-33 has emerged as a central mediator of immune, inflammatory, and fibrotic responses. Many studies have focused on mature IL-33, but elevated expression of the precursor, full-length IL-33 (FLIL33), has also been implicated in a spectrum of diseases, including tissue fibrosis. We previously reported and now confirmed that overexpression of FLIL33 induced phosphorylation of the key profibrotic signaling mediator of TGF-ß, Smad3, in primary human lung fibroblasts from healthy donors and idiopathic pulmonary fibrosis patients. Presently, we demonstrate that FLIL33-induced Smad3 phosphorylation was not abrogated by anti-TGF-ß antibody but was abrogated by ALK5/TGFBR1-specific and Smad3-specific inhibition, indicating that FLIL33 effect was independent of TGF-ß but dependent on its receptor, TGFBR. Western blotting analyses revealed that FLIL33 overexpression increased levels, but did not affect subcellular distribution, of the AP2A1 and AP2B1 subunits of the adaptor protein complex 2 (AP2), a known TGFBR binding partner. siRNA-mediated inhibition of these subunits blocked FLIL33-induced Smad3 phosphorylation, whereas AP2 subunit overexpression induced Smad3 phosphorylation even in the absence of FLIL33. RNA-Seq transcriptomic analyses revealed that fibroblast stimulation with TGF-ß induced major changes in expression levels of numerous genes, whereas overexpression of FLIL33 induced modest expression changes in a small number of genes. Furthermore, qRT-PCR tests demonstrated that despite inducing Smad3 phosphorylation, FLIL33 did not induce collagen gene transcription and even mildly attenuated TGF-ß-induced levels of collagen I and III mRNAs. We conclude that FLIL33 induces Smad3 phosphorylation through a TGF-ß-independent but TGF-ß receptor- and AP2- dependent mechanism and has limited downstream transcriptomic consequences.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Interleukin-33/metabolism , Smad3 Protein/metabolism , Adult , Female , Fibroblasts/metabolism , Fibrosis/physiopathology , Humans , Idiopathic Pulmonary Fibrosis/physiopathology , Male , Phosphorylation , Protein Binding , Protein Transport , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Transcription, Genetic , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
5.
Nanomedicine ; 20: 102024, 2019 08.
Article in English | MEDLINE | ID: mdl-31176045

ABSTRACT

Therapeutic efficacy of nanoparticle-drug formulations for cancer applications is significantly impacted by the extent of intra-tumoral accumulation and tumor tissue penetration. We advanced the application of surface plasmon resonance to examine interfacial properties of various clinical and emerging nanoparticles related to tumor tissue penetration. We observed that amine-terminated or positively-charged dendrimers and liposomes bound strongly to tumor extracellular matrix (ECM) proteins, whereas hydroxyl/carboxyl-terminated dendrimers and PEGylated/neutrally-charged liposomes did not bind. In addition, poly(lactic-co-glycolic acid) (PLGA) nanoparticles formulated with cholic acid or F127 surfactants bound strongly to tumor ECM proteins, whereas nanoparticles formulated with poly(vinyl alcohol) did not bind. Unexpectedly, following blood serum incubation, this binding increased and particle transport in ex vivo tumor tissues reduced markedly. Finally, we characterized the protein corona on PLGA nanoparticles using quantitative proteomics. Through these studies, we identified valuable criteria for particle surface characteristics that are likely to mediate their tissue binding and tumor penetration.


Subject(s)
Nanoparticles/chemistry , Neoplasms/metabolism , Surface Plasmon Resonance , Animals , Biological Transport , Blood Proteins/metabolism , Cell Line, Tumor , Dendrimers/chemistry , Extracellular Matrix Proteins/metabolism , Female , Humans , Liposomes , Mice, Nude , Nanoparticles/ultrastructure , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Protein Binding , Protein Corona/chemistry , Surface Properties , Surface-Active Agents/chemistry
6.
Arterioscler Thromb Vasc Biol ; 38(11): 2651-2664, 2018 11.
Article in English | MEDLINE | ID: mdl-30354243

ABSTRACT

Objective- Mutations affecting contractile-related proteins in the ECM (extracellular matrix), microfibrils, or vascular smooth muscle cells can predispose the aorta to aneurysms. We reported previously that the LRP1 (low-density lipoprotein receptor-related protein 1) maintains vessel wall integrity, and smLRP1-/- mice exhibited aortic dilatation. The current study focused on defining the mechanisms by which LRP1 regulates vessel wall function and integrity. Approach and Results- Isometric contraction assays demonstrated that vasoreactivity of LRP1-deficient aortic rings was significantly attenuated when stimulated with vasoconstrictors, including phenylephrine, thromboxane receptor agonist U-46619, increased potassium, and L-type Ca2+ channel ligand FPL-64176. Quantitative proteomics revealed proteins involved in actin polymerization and contraction were significantly downregulated in aortas of smLRP1-/- mice. However, studies with calyculin A indicated that although aortic muscle from smLRP1-/- mice can contract in response to calyculin A, a role for LRP1 in regulating the contractile machinery is not revealed. Furthermore, intracellular calcium imaging experiments identified defects in calcium release in response to a RyR (ryanodine receptor) agonist in smLRP1-/- aortic rings and cultured vascular smooth muscle cells. Conclusions- These results identify a critical role for LRP1 in modulating vascular smooth muscle cell contraction by regulating calcium signaling events that potentially protect against aneurysm development.


Subject(s)
Actin Cytoskeleton/metabolism , Calcium Signaling , Cytoskeletal Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Receptors, LDL/metabolism , Tumor Suppressor Proteins/metabolism , Vasoconstriction , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/genetics , Actin Cytoskeleton/ultrastructure , Animals , Aorta/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling/drug effects , Cytoskeletal Proteins/genetics , Female , Gene Expression Regulation , Low Density Lipoprotein Receptor-Related Protein-1 , Male , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/ultrastructure , Receptors, LDL/deficiency , Receptors, LDL/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Tissue Culture Techniques , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology
7.
Stem Cell Res Ther ; 9(1): 127, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720239

ABSTRACT

BACKGROUND: Adult bone marrow contains stem cells that replenish the myeloid and lymphoid lineages. A subset of human and mouse CD34+ bone marrow stem cells can be propagated in culture to autonomously express embryonic stem cell genes and embryonic germ layer lineage genes. The current study was undertaken to determine whether these CD34+ stem cells could be obtained from human blood, whether gene expression could be modulated by culture conditions and whether the cells produce insulin. METHODS: Human peripheral blood buffy coat cells and mobilized CD34+ cells from human blood and from blood from C57Bl/6 J mice were cultured in hybridoma medium or neural stem cell induction medium supplemented with interleukin (IL)-3, IL-6, and stem cell factor (SCF). Changes in mRNA and protein expression were assessed by Western blot analysis and by immunohistochemistry. Mass spectrometry was used to assess insulin production. RESULTS: We were able to culture CD34+ cells expressing embryonic stem cell and embryonic germ layer lineage genes from adult human peripheral blood after standard mobilization procedures and from mouse peripheral blood. Gene expression could be modulated by culture conditions, and the cells produced insulin in culture. CONCLUSION: These results suggest a practical method for obtaining large numbers of CD34+ cells from humans to allow studies on their potential to differentiate into other cell types.


Subject(s)
Cell Lineage/genetics , Cells, Cultured/metabolism , Germ Layers/metabolism , Hematopoietic Stem Cells/metabolism , Animals , Cell Differentiation , Humans , Mice , Mice, Inbred C57BL
8.
Nat Commun ; 8(1): 1870, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192230

ABSTRACT

Peridotite carbonation represents a critical step within the long-term carbon cycle by sequestering volatile CO2 in solid carbonate. This has been proposed as one potential pathway to mitigate the effects of greenhouse gas release. Most of our current understanding of reaction mechanisms is based on hand specimen and laboratory-scale analyses. Linking laboratory-scale observations to field scale processes remains challenging. Here we present the first geophysical characterization of serpentinite carbonation across scales ranging from km to sub-mm by combining aeromagnetic observations, outcrop- and thin section-scale magnetic mapping. At all scales, magnetic anomalies coherently change across reaction fronts separating assemblages indicative of incipient, intermittent, and final reaction progress. The abundance of magnetic minerals correlates with reaction progress, causing amplitude and wavelength variations in associated magnetic anomalies. This correlation represents a foundation for characterizing the extent and degree of in situ ultramafic rock carbonation in space and time.

9.
J Biol Chem ; 292(52): 21653-21661, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29127199

ABSTRACT

Human mature IL-33 is a member of the IL-1 family and a potent regulator of immunity through its pro-T helper cell 2 activity. Its precursor form, full-length interleukin-33 (FLIL33), is an intranuclear protein in many cell types, including fibroblasts, and its intracellular levels can change in response to stimuli. However, the mechanisms controlling the nuclear localization of FLIL33 or its stability in cells are not understood. Here, we identified importin-5 (IPO5), a member of the importin family of nuclear transport proteins, as an intracellular binding partner of FLIL33. By overexpressing various FLIL33 protein segments and variants in primary human lung fibroblasts and HEK293T cells, we show that FLIL33, but not mature interleukin-33, physically interacts with IPO5 and that this interaction localizes to a cluster of charged amino acids (positions 46-56) but not to an adjacent segment (positions 61-67) in the FLIL33 N-terminal region. siRNA-mediated IPO5 knockdown in cell culture did not affect nuclear localization of FLIL33. However, the IPO5 knockdown significantly decreased the intracellular levels of overexpressed FLIL33, reversed by treatment with the 20S proteasome inhibitor bortezomib. Furthermore, FLIL33 variants deficient in IPO5 binding remained intranuclear and exhibited decreased levels, which were also restored by the bortezomib treatment. These results indicate that the interaction between FLIL33 and IPO5 is localized to a specific segment of the FLIL33 protein, is not required for nuclear localization of FLIL33, and protects FLIL33 from proteasome-dependent degradation.


Subject(s)
Interleukin-33/metabolism , beta Karyopherins/metabolism , Amino Acid Sequence , Cell Nucleus/metabolism , Cytoplasm/metabolism , HEK293 Cells , HeLa Cells , Humans , Interleukin-33/genetics , Nuclear Localization Signals/metabolism , Nuclear Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Proteolysis , beta Karyopherins/genetics
10.
Biochemistry ; 55(8): 1204-13, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26854353

ABSTRACT

Itch and Nedd4 are members of the Nedd4 family of E3 ubiquitin ligases that are important in a number of biological processes. Precise regulation of their enzymatic activity is required for normal physiological function. Nedd4-like E3 ligases exist in an inactive form resulting from intramolecular interactions of their catalytic HECT domain with their WW domains. We identified the low-density-lipoprotein receptor class A domain containing 3 (LRAD3), a member of the LDL receptor family, as a potent activator of Itch and Nedd4 as evidenced by their increased auto-ubiquitination when bound to LRAD3. LRAD3 contains two PPxY motifs within its intracellular domain, both of which can bind to the WW domains on Itch and other Nedd4 family members with high affinity. Mutational analysis revealed that binding of Itch to the terminal LRAD3 PPxY motif is required to promote its auto-ubiquitination. We also determined that association of Itch and Nedd4 with LRAD3 leads to increased auto-ubiquitination and subsequent degradation through proteasome-mediated processes. Our findings reveal that LRAD3 is a component of pathways that function effectively to modulate Itch and Nedd4 auto-ubiquitination and levels. The identification of potential ligands for LRAD3 that may modulate LRAD3-induced activation of Itch and Nedd4 is likely to identify additional novel substrates and cellular functions for these important E3 ligases.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Receptors, LDL/metabolism , Repressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Motifs , Animals , HEK293 Cells , Humans , Mice , Nedd4 Ubiquitin Protein Ligases , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Maps , Proteolysis , Receptors, LDL/chemistry , Repressor Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitination
11.
J Neurochem ; 137(5): 730-43, 2016 06.
Article in English | MEDLINE | ID: mdl-26801685

ABSTRACT

Fetal alcohol spectrum disorder is the most common cause of mental disabilities in the western world. It has been quite established that acute alcohol exposure can dramatically affect astrocyte function. Because the effects of early alcohol exposure on cell physiology can persist into adulthood, we tested the hypothesis that ethanol exposure in ferrets during a period equivalent to the last months of human gestation leads to persistent changes in astrocyte secretome in vitro. Animals were treated with ethanol (3.5 g/kg) or saline between postnatal day (P)10-30. At P31, astrocyte cultures were made and cells were submitted to stable isotope labeling by amino acids. Twenty-four hour conditioned media of cells obtained from ethanol- or saline-treated animals (ET-CM or SAL-CM) were collected and analyzed by quantitative mass spectrometry in tandem with liquid chromatography. Here, we show that 65 out of 280 quantifiable proteins displayed significant differences comparing ET-CM to SAL-CM. Among the 59 proteins that were found to be reduced in ET-CM we observed components of the extracellular matrix such as laminin subunits α2, α4, ß1, ß2, and γ1 and the proteoglycans biglycan, heparan sulfate proteoglycan 2, and lumican. Proteins with trophic function such as insulin-like growth factor binding protein 4, pigment epithelium-derived factor, and clusterin as well as proteins involved on modulation of proteolysis such as metalloproteinase inhibitor 1 and plasminogen activator inhibitor-1 were also reduced. In contrast, pro-synaptogeneic proteins like thrombospondin-1, hevin as well as the modulator of extracelular matrix expression, angiotensinogen, were found increased in ET-CM. The analysis of interactome maps through ingenuity pathway analysis demonstrated that the amyloid beta A4 protein precursor, which was found reduced in ET-CM, was previously shown to interact with ten other proteins that exhibited significant changes in the ET-CM. Taken together our results strongly suggest that early exposure to teratogens such as alcohol may lead to an enduring change in astrocyte secretome. Despite efforts in prevention, fetal alcohol spectrum disorders are a major cause of mental disabilities. Here, we show that developmental exposure to alcohol lead to a persistent change in the pattern of proteins secreted (secretome) by astrocytes. This study is also the first mass spectrometry-based assessment of the astrocyte secretome in a gyrencephalic animal. Cover Image for this issue: doi: 10.1111/jnc.13320.


Subject(s)
Astrocytes/drug effects , Astrocytes/metabolism , Ethanol/toxicity , Proteome/genetics , Proteome/metabolism , Animals , Animals, Newborn , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Ethanol/administration & dosage , Female , Ferrets , Male , Pregnancy
12.
Arterioscler Thromb Vasc Biol ; 33(9): 2137-46, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23868935

ABSTRACT

OBJECTIVE: Low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is abundant in vascular smooth muscle cells. Mice in which the lrp1 gene is deleted in smooth muscle cells (smLRP1(-/-)) on a low-density lipoprotein receptor-deficient background display excessive platelet derived growth factor-signaling, smooth muscle cell proliferation, aneurysm formation, and increased susceptibility to atherosclerosis. The objectives of the current study were to examine the potential of LRP1 to modulate vascular physiology under nonatherogenic conditions. APPROACH AND RESULTS: We found smLRP1(-/-) mice to have extensive in vivo aortic dilatation accompanied by disorganized and degraded elastic lamina along with medial thickening of the arterial vessels resulting from excess matrix deposition. Surprisingly, this was not attributable to excessive platelet derived growth factor-signaling. Rather, quantitative differential proteomic analysis revealed that smLRP1(-/-) vessels contain a 4-fold increase in protein levels of high-temperature requirement factor A1 (HtrA1), which is a secreted serine protease that is known to degrade matrix components and to impair elastogenesis, resulting in fragmentation of elastic fibers. Importantly, our study discovered that HtrA1 is a novel LRP1 ligand. Proteomics analysis also identified excessive accumulation of connective tissue growth factor, an LRP1 ligand and a key mediator of fibrosis. CONCLUSIONS: Our findings suggest a critical role for LRP1 in maintaining the integrity of vessels by regulating protease activity as well as matrix deposition by modulating HtrA1 and connective tissue growth factor protein levels. This study highlights 2 new molecules, connective tissue growth factor and HtrA1, which contribute to detrimental changes in the vasculature and, therefore, represent new target molecules for potential therapeutic intervention to maintain vessel wall homeostasis.


Subject(s)
Aorta/enzymology , Aortitis/enzymology , Connective Tissue Growth Factor/metabolism , Myocytes, Smooth Muscle/enzymology , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism , Tumor Suppressor Proteins/metabolism , Age Factors , Aging , Animals , Aorta/physiopathology , Aorta/ultrastructure , Aortitis/genetics , Aortitis/pathology , Aortitis/physiopathology , Blood Pressure , Cells, Cultured , Dilatation, Pathologic , Elastic Tissue/metabolism , Endocytosis , Enzyme Activation , Extracellular Matrix/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibrosis , High-Temperature Requirement A Serine Peptidase 1 , Ligands , Low Density Lipoprotein Receptor-Related Protein-1 , Male , Mice , Mice, Knockout , Proteomics/methods , Receptors, LDL/deficiency , Receptors, LDL/genetics , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
13.
Anticancer Drugs ; 23(2): 200-11, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21934603

ABSTRACT

Breast cancer mortality is primarily due to the occurrence of metastatic disease. We have identified a novel potential therapeutic agent derived from an edible root of the plant Colocasia esculenta, commonly known as taro, which has demonstrable activity in a preclinical model of metastatic breast cancer and that should have minimal toxicity. We have shown for the first time that a water-soluble extract of taro (TE) potently inhibits lung-colonizing ability and spontaneous metastasis from mammary gland-implanted tumors, in a murine model of highly metastatic estrogen receptor, progesterone receptor and Her-2/neu-negative breast cancer. TE modestly inhibits the proliferation of some, but not all, breast and prostate cancer cell lines. Morphological changes including cell rounding were observed. Tumor cell migration was completely blocked by TE. TE treatment also inhibited prostaglandin E2 (PGE2) synthesis and downregulated cyclooxygenase 1 and 2 mRNA expression. We purified the active compound(s) to near homogeneity with antimetastatic activity comparable with stock TE. The active compound with a native size of approximately 25 kDa contains two fragments of nearly equal size. The N-terminal amino acid sequencing of both fragments reveals that the active compound is highly related to three taro proteins: 12-kDa storage protein, tarin and taro lectin. All are similar in terms of amino acid sequence, posttranslational processing and all contain a carbohydrate-binding domain. This is the first report describing compound(s) derived from taro that potently and specifically inhibits tumor metastasis.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Colocasia/chemistry , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/drug therapy , Plant Extracts/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chromatography, Gel , Chromatography, Reverse-Phase , Dinoprostone/metabolism , Dose-Response Relationship, Drug , Female , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred Strains , Molecular Weight , Neoplasm Transplantation , Plant Extracts/isolation & purification , Plant Roots/chemistry , Prostaglandin-Endoperoxide Synthases/metabolism , Real-Time Polymerase Chain Reaction
14.
Curr Protoc Protein Sci ; Chapter 11: 11.7.1-11.7.20, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21400688

ABSTRACT

Two enzymatic methods commonly used in N-terminal sequence analysis of blocked proteins are presented: one uses pyroglutamate aminopeptidase for N(α)-pyrrolidone carboxyl-proteins in solution or blotted onto a membrane, and the other uses acylaminoacyl-peptide hydrolase for N(α)-acyl-proteins blocked with other acyl groups. A Support Protocol describes a colorimetric assay for pyroglutamate aminopeptidase activity. Sequencing with acylaminoacyl-peptide hydrolase must include fragmentation of the protein before unblocking, so procedures are provided for chemically blocking newly generated peptides with either succinic anhydride or phenylisothiocyanate/performic acid. The hydrolase is then applied to the total mixture of peptides, only one of which, the acylated N-terminal peptide, should be a substrate for hydrolase. After incubation, the mixture of peptides is subjected to sequence analysis.


Subject(s)
Biochemistry/methods , Peptides/metabolism , Proteins/chemistry , Proteins/metabolism , Sequence Analysis/methods , Acylation , Colorimetry , Formates/metabolism , Hydrolases/metabolism , Isothiocyanates/metabolism , Peptide Fragments/metabolism , Peptide Hydrolases/metabolism , Pyroglutamyl-Peptidase I/metabolism , Pyrrolidonecarboxylic Acid/chemistry , Pyrrolidonecarboxylic Acid/isolation & purification , Solutions , Succinic Anhydrides/metabolism
15.
Nat Methods ; 4(11): 957-62, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17952089

ABSTRACT

Elucidating kinase-substrate relationships is critical for understanding how phosphorylation affects signal transduction and regulatory cascades. Using the alpha catalytic subunit of protein kinase CK2 (CK2alpha) as a paradigm, we developed an in-gel method to facilitate identification of physiologic kinase substrates. In this approach, the roles of kinase and substrate in a classic in-gel kinase assay are reversed. In the reverse in-gel kinase assay (RIKA), a kinase is copolymerized in a denaturing polyacrylamide gel used to resolve a tissue or cell protein extract. Restoration of kinase activity and substrate structure followed by an in situ kinase reaction and mass spectrometric analyses results in identification of potential kinase substrates. We demonstrate that this method can be used to profile both known and novel human and mouse substrates of CK2alpha and cAMP-dependent protein kinase (PKA). Using widely available straightforward technology, the RIKA has the potential to facilitate discovery of physiologic kinase substrates in any biological system.


Subject(s)
Acrylic Resins/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Protein Kinases/chemistry , Protein Kinases/metabolism , Animals , Casein Kinase II/chemistry , Casein Kinase II/metabolism , Caseins/chemistry , Catalysis , Cell Extracts/chemistry , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Electrophoresis, Gel, Two-Dimensional/methods , Humans , Intramolecular Oxidoreductases/chemistry , Intramolecular Oxidoreductases/metabolism , Male , Mice , Phosphoric Monoester Hydrolases/chemistry , Phosphorylation , Prostaglandin-E Synthases , Protein Denaturation , Protein Folding , Reproducibility of Results , Seminal Vesicles/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Triazoles/chemistry
16.
Proc Natl Acad Sci U S A ; 103(25): 9506-11, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-16769904

ABSTRACT

RNA polymerase II (Pol II), whose 12 subunits are conserved across eukaryotes, is at the heart of the machinery responsible for transcription of mRNA. Although associated general transcription factors impart promoter specificity, responsiveness to gene- and tissue-selective activators additionally depends on the multiprotein Mediator coactivator complex. We have isolated from tissue extracts a distinct and abundant mammalian Pol II subpopulation that contains an additional tightly associated polypeptide, Gdown1. Our results establish that Gdown1-containing Pol II, designated Pol II(G), is selectively dependent on and responsive to Mediator. Thus, in an in vitro assay with general transcription factors, Pol II lacking Gdown1 displays unfettered levels of activator-dependent transcription in the presence or absence of Mediator. In contrast, Pol II(G) is dramatically less efficient in responding to activators in the absence of Mediator yet is highly and efficiently responsive to activators in the presence of Mediator. Our results reveal a transcriptional control mechanism in which Mediator-dependent regulation is enforced by means of Gdown1, which likely restricts Pol II function only to be reversed by Mediator.


Subject(s)
RNA Polymerase II/metabolism , Amino Acid Sequence , Animals , Cattle , Humans , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Subunits/metabolism , RNA Polymerase II/isolation & purification , Sequence Alignment , Swine , Transcription, Genetic/genetics
17.
J Cell Sci ; 115(Pt 10): 2031-40, 2002 May 15.
Article in English | MEDLINE | ID: mdl-11973345

ABSTRACT

Integrin receptors mediate the formation of adhesion complexes and play important roles in signal transduction from the extracellular matrix. Integrin-based adhesion complexes (IAC) contain proteins that link integrins to the cytoskeleton and recruit signaling molecules, including vinculin, paxillin, focal adhesion kinase, talin and alpha-actinin. In this study, we describe a approximately 160 kDa protein that is markedly enriched at IAC induced by clustering integrins with fibronectin-coated beads. Protein sequence analysis reveals that this approximately 160 kDa protein is kinectin. Kinectin is an integral membrane protein found in endoplasmic reticulum, and it serves as a receptor for the motor protein kinesin. Fibronectin-induced IAC sequestered over half of the total cellular content of kinectin within 20 minutes. In addition, two other ER-resident proteins, RAP [low-density lipoprotein receptor-related protein (LRP) receptor-associated protein] and calreticulin, were found to be clustered at IAC, whereas kinesin was not. Our results identify a novel class of constituents of IAC.


Subject(s)
Integrins/metabolism , Membrane Proteins/metabolism , Amino Acid Sequence , Animals , Cell Adhesion Molecules/metabolism , Cell Line , Chromatography, Affinity , Cytoskeleton/metabolism , Endoplasmic Reticulum/metabolism , Fibroblasts/metabolism , Fibronectins/metabolism , Humans , Macromolecular Substances , Membrane Proteins/chemistry , Mice , Molecular Weight , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...