Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Curr Top Med Chem ; 24(12): 1075-1100, 2024.
Article in English | MEDLINE | ID: mdl-38551050

ABSTRACT

BACKGROUND: Immunomodulation is the modification of immune responses to control disease progression. While the synthetic immunomodulators have proven efficacy, they are coupled with toxicity and other adverse effects, and hence, the efforts were to identify natural phytochemicals with immunomodulatory potential. OBJECTIVE: To understand the immunomodulatory properties of various phytochemicals and investigate them in Echinacea species extracts using an in silico approach. METHODOLOGY: Several scientific database repositories were searched using different keywords: "Phytochemicals," "Alkaloids," "Polyphenols," "Flavonoids," "Lectins," "Glycosides," "Tannins," "Terpenoids," "Sterols," "Immunomodulators," and "Human Immune System" without any language restriction. Additionally, the study specifically investigated the immunomodulatory properties of Echinacea species extracts using gene expression analysis of GSE12259 from NCBI-GEO through the Bioconductor package GEOquery and limma. RESULTS: A total of 182 studies were comprehensively analyzed to understand immunomodulatory phytochemicals. The in silico analysis highlighted key biological processes (positive regulation of cytokine production, response to tumor necrosis factor) and molecular functions (cytokine receptor binding, receptor-ligand activity, and cytokine activity) among Echinacea species extracts contributing to immune responses. Further, it also indicated the association of various metabolic pathways, i.e., pathways in cancer, cytokine-cytokine receptor interaction, NF-kappa B, PI3K-Akt, TNF, MAPK, and NOD-like receptor signaling pathways, with immune responses. The study revealed various hub targets, including CCL20, CCL4, GCH1, SLC7A11, SOD2, EPB41L3, TNFAIP6, GCLM, EGR1, and FOS. CONCLUSION: The present study presents a cumulative picture of phytochemicals with therapeutic benefits. Additionally, the study also reported a few novel genes and pathways in Echinacea extracts by re-analyzing GSE 12259 indicating its anti-inflammatory, anti-viral, and immunomodulatory properties.


Subject(s)
Computational Biology , Phytochemicals , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Echinacea/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
3 Biotech ; 13(7): 252, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37388856

ABSTRACT

Contemporary scientific findings revealed that our daily food stuffs are enriched by encrypted bioactive peptides (BPs), evolved by peptide linkage of amino acids or encrypted from the native protein structures. Remarkable to these BPs lies in their potential health benefiting biological activities to serve as nutraceuticals or a lead addition to the development of functional foods. The biological activities of BPs vary depending on the sequence as well as amino acid composition. Existing database records approximately 3000 peptide sequences which possess potential biological activities such as antioxidants, antihypertensive, antithrombotic, anti-adipogenics, anti-microbials, anti-inflammatory, and anti-cancerous. The growing evidences suggest that BPs have very low toxicity, higher accuracy, less tissue accretion, and are easily degraded in the disposed environment. BPs are nowadays evolved as biologically active molecules with potential scope to reduce microbial contamination as well as ward off oxidation of foods, amend diverse range of human diseases to enhance the overall quality of human life. Against the clinical and health perspectives of BPs, this review aimed to elaborate current evolution of nutritional potential of BPs, studies pertaining to overcome limitations with respect to special focus on emerging extraction, protection and delivery tools of BPs. In addition, the nano-delivery mechanism of BP and its clinical significance is detailed. The aim of current review is to augment the research in the field of BPs production, identification, characterisation and to speed up the investigation of the incredible potentials of BPs as potential nutritional and functional food ingredient.

3.
Front Plant Sci ; 14: 1127239, 2023.
Article in English | MEDLINE | ID: mdl-36998696

ABSTRACT

Crop wild relatives (CWRs), landraces and exotic germplasm are important sources of genetic variability, alien alleles, and useful crop traits that can help mitigate a plethora of abiotic and biotic stresses and crop yield reduction arising due to global climatic changes. In the pulse crop genus Lens, the cultivated varieties have a narrow genetic base due to recurrent selections, genetic bottleneck and linkage drag. The collection and characterization of wild Lens germplasm resources have offered new avenues for the genetic improvement and development of stress-tolerant, climate-resilient lentil varieties with sustainable yield gains to meet future food and nutritional requirements. Most of the lentil breeding traits such as high-yield, adaptation to abiotic stresses and resistance to diseases are quantitative and require the identification of quantitative trait loci (QTLs) for marker assisted selection and breeding. Advances in genetic diversity studies, genome mapping and advanced high-throughput sequencing technologies have helped identify many stress-responsive adaptive genes, quantitative trait loci (QTLs) and other useful crop traits in the CWRs. The recent integration of genomics technologies with plant breeding has resulted in the generation of dense genomic linkage maps, massive global genotyping, large transcriptomic datasets, single nucleotide polymorphisms (SNPs), expressed sequence tags (ESTs) that have advanced lentil genomic research substantially and allowed for the identification of QTLs for marker-assisted selection (MAS) and breeding. Assembly of lentil and its wild species genomes (~4Gbp) opens up newer possibilities for understanding genomic architecture and evolution of this important legume crop. This review highlights the recent strides in the characterization of wild genetic resources for useful alleles, development of high-density genetic maps, high-resolution QTL mapping, genome-wide studies, MAS, genomic selections, new databases and genome assemblies in traditionally bred genus Lens for future crop improvement amidst the impending global climate change.

4.
Genes (Basel) ; 14(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36833297

ABSTRACT

The enormous perennial monocotyledonous herb banana (Musa spp.), which includes dessert and cooking varieties, is found in more than 120 countries and is a member of the order Zingiberales and family Musaceae. The production of bananas requires a certain amount of precipitation throughout the year, and its scarcity reduces productivity in rain-fed banana-growing areas due to drought stress. To increase the tolerance of banana crops to drought stress, it is necessary to explore crop wild relatives (CWRs) of banana. Although molecular genetic pathways involved in drought stress tolerance of cultivated banana have been uncovered and understood with the introduction of high-throughput DNA sequencing technology, next-generation sequencing (NGS) techniques, and numerous "omics" tools, unfortunately, such approaches have not been thoroughly implemented to utilize the huge potential of wild genetic resources of banana. In India, the northeastern region has been reported to have the highest diversity and distribution of Musaceae, with more than 30 taxa, 19 of which are unique to the area, accounting for around 81% of all wild species. As a result, the area is regarded as one of the main locations of origin for the Musaceae family. The understanding of the response of the banana genotypes of northeastern India belonging to different genome groups to water deficit stress at the molecular level will be useful for developing and improving drought tolerance in commercial banana cultivars not only in India but also worldwide. Hence, in the present review, we discuss the studies conducted to observe the effect of drought stress on different banana species. Moreover, the article highlights the tools and techniques that have been used or that can be used for exploring and understanding the molecular basis of differentially regulated genes and their networks in different drought stress-tolerant banana genotypes of northeast India, especially wild types, for unraveling their potential novel traits and genes.


Subject(s)
Musa , Musa/genetics , Droughts , Drought Resistance , Genotype , India
5.
Biol Trace Elem Res ; 201(1): 215-219, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35157231

ABSTRACT

Nails have been found to be a non-invasive and readily available tissue whose mineral content can change because of a change in dietary mineral intake. Thus, this study was undertaken to determine whether boron (B) supplementation would change the concentrations of some mineral elements in nails and whether these changes correlated with changes induced in bone. Female New Zealand White rabbits (aged 8 months, 2-2.5 kg weight) were fed a grain-based, high-energy diet containing 3.88 mg B/kg. The rabbits were divided into four treatment groups: controls receiving no supplemental B (N: 7; C) and three groups supplemented with 30 mg B/L in drinking water as borax decahydrate (Na2B4O7∙10H2O, N: 10; BD), borax anhydrous (Na2B4O7, N: 7; Bah), and boric acid (H3BO3, N: 7; BA). Boron, calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorus (P), potassium (K), sodium (Na), sulfur (S), and zinc (Zn) concentrations in nails were determined by inductively coupled plasma atomic emission spectroscopy. Parametric and non-parametric multiple group comparisons and post hoc tests were performed and whether a correlation between nail and tibia and femur mineral elements concentrations were determined. A p-value of < 0.05 was considered statistically significant. Boron was not detectable in control nails but was found in the nails of the three B supplemented groups. Boron supplementation markedly increased the Ca concentration in nails with the effect greatest in the BA and BD groups. The P and Mg concentrations also were increased by B supplementation with the effect most marked in the BA group. In contrast, B supplementation decreased the Na concentration with the effect most noticeable in the BD and Bah groups. The Zn concentration in nails was not affected by BA and BD supplementation but was decreased by Bah supplementation. Boron supplementation did not significantly affect the concentrations of Cu, Fe, Mo, K, and S in nails. No meaningful significant correlations were found between nail mineral elements and tibia and femur mineral elements found previously. Nails can be an indicator of the response to boron supplementation but are not useful to indicate changes in mineral elements in bone in response to B supplementation.


Subject(s)
Boron , Minerals , Female , Animals , Rabbits , Boron/pharmacology , Borates , Dietary Supplements , Calcium , Magnesium , Zinc , Sodium
6.
Front Nutr ; 10: 1310020, 2023.
Article in English | MEDLINE | ID: mdl-38239835

ABSTRACT

Addressing global hidden hunger, particularly in women of childbearing age and children under five, presents a significant challenge, with a focus on iron (Fe) and zinc (Zn) deficiency. Wheat, a staple crop in the developing world, is crucial for addressing this issue through biofortification efforts. While extensive research has explored various approaches to enhance Fe and Zn content in wheat, there remains a scarcity of comprehensive data on their bioavailability and impact on human and animal health. This systematic review examines the latest trends in wheat biofortification approaches, assesses bioavailability, evaluates the effects of biofortified wheat on health outcomes in humans and animals, and analyzes global policy frameworks. Additionally, a meta-analysis of per capita daily Fe and Zn intake from average wheat consumption was conducted. Notably, breeding-based approaches have led to the release of 40 biofortified wheat varieties for commercial cultivation in India, Pakistan, Bangladesh, Mexico, Bolivia, and Nepal, but this progress has overlooked Africa, a particularly vulnerable continent. Despite these advancements, there is a critical need for large-scale systematic investigations into the nutritional impact of biofortified wheat, indicating a crucial area for future research. This article can serve as a valuable resource for multidisciplinary researchers engaged in wheat biofortification, aiding in the refinement of ongoing and future strategies to achieve the Sustainable Development Goal of eradicating hunger and malnutrition by 2030.

7.
Biology (Basel) ; 11(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35892950

ABSTRACT

Boron (B) is a crucial microelement for several biological processes in plants; however, it becomes hazardous when present in excess in the soil. B toxicity adversely affects the wheat yield all around the world, particularly in the arid and semiarid regions. Aegilops, the nearest wild wheat relatives, could be an efficient source to develop B toxicity tolerance in modern cultivars. However, to potentially utilize these species, it is necessary to understand the underlying mechanisms that are involved in providing them tolerance. Other than hampering cellular and physiological activities, high B inhibits the uptake of nutrients in wheat plants that lead to nutrients deficiency causing a hindered growth. Thus, it is crucial to determine the effect of B toxicity on nutrient uptake and finally, to understand the role of nutrient homeostasis in developing the adaptive mechanism in tolerant species. Unfortunately, none of the studies to date has explored the effect of high B supply on the nutrient uptake in B toxicity tolerant wild wheat species. In this study, we explored the effect of 1 mM B (toxic B), and 10 mM B (very toxic B) B on the nutrient uptake in 19 Aegilops genotypes differing in B tolerance in contrast to Bolal 2973, the familiar B tolerant genotype. The obtained outcomes suggested a significant association between the B toxicity tolerance and the level of nutrient uptake in different genotypes. The B toxicity tolerant genotypes, Ab2 (TGB 026219, A. biuncialis genotype) and Ac4 (TGB 000107, A. columnaris genotype) were clustered together in the nutrient homeostasis-based heat map. Though B toxicity mostly had an inhibitory effect on the uptake of nutrients in root-shoot tissues, the tolerant genotypes revealed an increase in nutrient uptake under B toxicity in contrast with Control. The study directs towards future research where the role of external supply of few nutrients in enhancing the B toxicity tolerance of susceptible genotypes can be studied. Moreover, the genotype-dependent variation in the nutrient profile of the studied Aegilops genotypes under high B suggested that increasing number of Aegilops germplasm should be screened for B toxicity tolerance for their successful inclusion in the pre-breeding programs focusing on this issue.

8.
Front Plant Sci ; 12: 736614, 2021.
Article in English | MEDLINE | ID: mdl-34777419

ABSTRACT

Boron (B) is an important micronutrient required for the normal growth and development of plants. However, its excess in the soil causes severe damage to plant tissues, which affects the final yield. Wheat, one of the main staple crops, has been reported to be largely affected by B toxicity stress in arid and semi-arid regions of the world. The prevalence of B toxicity stress can be addressed by utilizing wild wheat genotypes with a variant level of stress tolerance. Wild wheat relatives have been identified as a prominent source of several abiotic stress-tolerant genes. However, Aegilops species in the tertiary gene pool of wheat have not been well exploited as a source of B toxicity tolerance. This study explores the root and shoot growth, proline induction, and extent of lipid peroxidation in 19 Aegilops accessions comprising 6 different species and the B-tolerant check wheat cultivar Bolal 2973 grown under Control (3.1 µM B), toxic (1 mM B), and highly toxic (10 mM B) B stress treatment. B toxicity stress had a more decisive impact on growth parameters as compared to the malondialdehyde (MDA) and proline content. The obtained results suggested that even the genotypes with high shoot B (SB) accumulation can be tolerant to B toxicity stress, and the mechanism of B redistribution in leaves should be studied in detail. It has been proposed that the studied Aegilops accessions can be potentially used for genetically improving the B toxicity-tolerance trait due to a high level of variation in the response toward high B toxicity. Though a number of accessions showed suppression in the root and shoot growth, very few accessions with stress adaptive plasticity to B toxicity stress leading to an improvement of shoot growth parameters could be determined. The two accessions, Aegilops biuncialis accession TGB 026219 and Aegilops columnaris accession TGB 000107, were identified as the potential genotypes with B toxicity stress tolerance and can be utilized for developing a pre-breeding material in B tolerance-based breeding programs.

9.
Biology (Basel) ; 10(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34827116

ABSTRACT

The deficiency of nutrients in food crops is a major issue affecting the health of human beings, mainly in underdeveloped areas. Despite the development in the methods of food fortification, several barriers such as lack of proper regulations and smaller public-private partnerships hinder its successful implementation in society. Consequently, genetic and agronomic biofortification has been suggested as the potential techniques for fortifying the nutrients in diets. However, the time-consuming nature and restricted available diversity in the targeted crop gene pool limit the benefits of genetic biofortification. In agronomic biofortification, organic fertilizers face the problem of prolonged duration of nutrients release and lesser content of minerals; while in inorganic fertilizers, the large-sized fertilizers (greater than 100 nm) suffer from volatilization and leaching losses. The application of nanotechnology in agriculture holds enormous potential to cope with these challenges. The utility of nanomaterials for wheat biofortification gains its importance by supplying the appropriate dose of fertilizer at the appropriate time diminishing the environmental concerns and smoothening the process of nutrient uptake and absorption. Wheat is a major crop whose nano-biofortification can largely handle the issue of malnutrition and nutrients deficiency in human beings. Though several research experiments have been conducted at small levels to see the effects of nano-biofortification on wheat plants, a review article providing an overview of such studies and summarizing the benefits and outcomes of wheat nano-biofortification is still lacking. Although a number of review articles are available on the role of nanotechnology in wheat crop, these are mostly focused on the role of nanoparticles in alleviating biotic and abiotic stress conditions in wheat. None of them focused on the prospects of nanotechnology for wheat biofortification. Hence, in this review for the first time, the current advancement in the employment of different nanotechnology-based approaches for wheat biofortification has been outlined. Different strategies including the supply of nano-based macro- and micronutrients that have shown promising results for wheat improvement have been discussed in detail. Understanding several aspects related to the safe usage of nanomaterials and their future perspectives may enhance their successful utilization in terms of economy and fulfillment of nutritional requirements following wheat nano-biofortification.

10.
J Trace Elem Med Biol ; 67: 126799, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34082267

ABSTRACT

The reported beneficial effects of boron on mineralized tissues in animals and humans vary. Thus, a study was performed to assess whether the variability was the result of different forms of boron supplementation, method of supplementation, and increased adiposity of the rabbit experimental model. Thirty-one female New Zealand White rabbits, (aged 8 months, 2-2.5 kg weight) were fed a grain-based high energy diet containing 11.76 MJ/kg (2850 kcal/kg) and 3.88 mg boron/kg. The rabbits were randomly divided into four treatment groups: Control group was not supplemented with boron (n:7; C), and three groups supplemented with 30 mg boron/L in drinking water in the forms of borax decahydrate (Na2O4B7 10H2O, n:10; BD), borax anhydrous (Na2O4B7, n:7; Bah) or boric acid (H2BO3, n:7; BA). Cone beam micro computed tomographic (micro-CT), histological and elemental analysis was used to evaluate the bones/teeth. Results of the experiments demonstrated that boron supplementation had beneficial effects on mineralized tissue but varied with the type of treatment. Mineral density of the femur was increased by the Bah and BA treatments (p < 0.001), but only BA increased mineral density in the tibia (p = 0.015). In incisor teeth, mineral density of dentin was increased by all boron treatments (p < 0.001), and mineral density of enamel was increased by the BD and Bah treatments. Mineral analysis found that all boron treatments increased the boron concentration in tibia and femur. In the tibia, both the BD and Bah treatments decreased the iron concentration, and the BD treatment decreased the magnesium concentration. Sodium and zinc concentrations in the tibia were decreased by the Bah and BA treatments. The boron treatments did not significantly affect the calcium, copper, molybdenum, potassium phosphorus, and sulfur concentrations. The findings show that boron supplementation can have beneficial effects on mineralized tissues in an animal model with increased adiposity, which is a model of increased inflammatory stress. However, this effect varies with the form of boron supplemented, the method of supplementation, and the mineralized tissue examined.


Subject(s)
Bone Density , Boric Acids , Dietary Supplements , Animals , Borates/pharmacology , Boron/pharmacology , Diet , Drinking Water , Female , Minerals , Rabbits
11.
3 Biotech ; 10(11): 494, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33134012

ABSTRACT

The role of exogenous nitric oxide (NO) application in alleviating drought stress responses by enhancing the antioxidant activities in plants is well established for several species. However, none of the studies reported its role in protecting the watermelon genotypes from drought stress. In this study, we aimed to observe the effect of NO application on the physiological and biochemical responses of the two watermelon (Citrullus lanatus var. lanatus) genotypes grown under drought stress conditions by treating the plants with 15% polyethylene glycol 6000 (PEG 6000) and 100 µM sodium nitroprusside (SNP), which is a NO donor in Hoagland solution. Among the two genotypes, one genotype, KAR 98 was drought tolerant; while another, KAR 147 was drought sensitive. Drought stress showed a decrease in the growth parameters of both the genotypes; however, as expected it was higher in the susceptible genotype, KAR 147. NO application could not prevent the reductions in the growth parameters; however, it reduced the increment in malondialdehyde (MDA) content caused by the drought stress in both watermelon genotypes. Moreover, while drought stress condition reduced the ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and peroxidase (POX) activities in both genotypes, NO + PEG application increased the APX activity in the tolerant genotype, KAR 98. Though the obtained results does not show the direct involvement of NO in increasing drought tolerance of watermelon plants, the increase in the APX antioxidant enzyme activity on NO application under drought stress confirmed its role in protecting the watermelon genotypes from the oxidative damage caused by the drought stress. Moreover, it can be concluded that the effect of NO application on watermelons' responses towards drought stress condition may vary according to the specific genotypes. As to date none of the studies reported the effect of NO application on the antioxidant activity of watermelon genotypes under drought stress, the present study may provide information about the mechanisms that can be focused to improve drought stress tolerance of watermelon genotypes.

12.
Front Plant Sci ; 11: 568890, 2020.
Article in English | MEDLINE | ID: mdl-33178237

ABSTRACT

The sudden emergence of COVID-19 caused by a novel coronavirus (nCoV) led the entire world to search for relevant solutions to fight the pandemic. Although continuous trials are being conducted to develop precise vaccines and therapeutic antibodies, a potential remedy is yet to be developed. Plants have largely contributed to the treatment of several human diseases and different phytoconstituents have been previously described to impede the replication of numerous viruses. Despite the previous positive reports of plant-based medications, no successful clinical trials of phyto-anti-COVID drugs could be conducted to date. In this article, we discuss varying perspectives on why phyto-anti-viral drug clinical trials were not successful in the case of COVID-19. The issue has been discussed in light of the usage of plant-based therapeutics in previous coronavirus outbreaks. Through this article, we aim to identify the disadvantages in this research area and suggest some measures to ensure that phytoconstituents can efficiently contribute to future random viral outbreaks. It is emphasized that if used strategically phyto-inhibitors with pre-established clinical data for other diseases can save the time required for long clinical trials. The scientific community should competently tap into phytoconstituents and take their research up to the final stage of clinical trials so that potential phyto-anti-COVID drugs can be developed.

13.
3 Biotech ; 10(4): 172, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32206506

ABSTRACT

Fusarium head blight (FHB) disease that occurs in wheat is caused by Fusarium graminearum and is a major risk to wheat yield. Although several research efforts focusing on FHB have been conducted in the past several decades, conditions have become more critical due to the increase in its virulent forms. In such a scenario, conferring complete resistance in plants seems to be difficult for handling this issue. The phenotyping for FHB and finding a solution for it at the genetic level comprises a long-term process as FHB infection is largely affected by environmental conditions. Modern molecular strategies have played a crucial role in revealing the host-pathogen interaction in FHB. The integration of molecular biology-based methods such as genome-wide association studies and marker-based genomic selection has provided potential cultivars for breeding programs. In this review, we aim at outlining the contemporary status of the studies conducted on FHB in wheat. The influence of FHB in wheat on animals and human health is also discussed. In addition, a summary of the advancement in the molecular technologies for identifying and developing the FHB-resistant wheat genetic resources is provided. It also suggests the future measures that are required to reduce the world's vulnerability to FHB which was one of the main goals of the US Wheat and Barley Scab Initiative.

14.
Plants (Basel) ; 8(10)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547605

ABSTRACT

The continuously changing environment has intensified the occurrence of abiotic stress conditions. Individually, boron (B) toxicity and salinity stress are well recognized as severe stress conditions for plants. However, their coexistence in arid and semi-arid agricultural regions has shown ambiguous effects on plant growth and development. Few studies have reported that combined boron toxicity and high salinity stress have more damaging effects on plant growth than individual B and salt stress, while other studies have highlighted less damaging effects of the combined stress. Hence, it is interesting to understand the positive interaction of this combined stress so that it can be effectively employed for the improvement of crops that generally show the negative effects of this combined stress. In this review, we discussed the possible processes that occur in plants in response to this combined stress condition. We highly suggest that the combined B and salinity stress condition should be considered as a novel stress condition by researchers; hence, we recommend the name "BorSal" for this combined boron toxicity and high salinity state in the soil. Membrane-bound activities, mobility of ions, water transport, pH changes, transpiration, photosynthesis, antioxidant activities, and different molecular transporters are involved in the effects of BorSal interaction in plants. The discussed mechanisms indicate that the BorSal stress state should be studied in light of the involved physiological and molecular processes that occur after B and salt interaction in plants.

15.
Springerplus ; 5(1): 1912, 2016.
Article in English | MEDLINE | ID: mdl-27867819

ABSTRACT

BACKGROUND: A total of 150 bread wheat genotypes representing 121 Indian and 29 Turkish origin were screened for nutrient concentrations and grain protein content. Elemental and grain protein composition were studied by Inductively Coupled Plasma-Atomic Emission Spectrophotometer and LECO analyser, respectively. The study was performed to determine the variability in nutrient concentrations present in the collected wheat genetic material from two countries. RESULTS: Several fold variations among genotypes existed for almost all the elements. Three major components of principal component analysis (PCA) revealed 60.8% variation among the genotypes. Nutrient variables segregated into two groups, one group containing all the macroelements except sulphur; and another cluster containing proteins and all the microelements except Zn and Mn. Pearson correlation analysis and heat-map were in accordance with each other determining strong positive association between P-K, Mn-Zn, Mg-S and Cu-protein content. Also, PCA and hierarchical grouping divided all the Indian and Turkish genotypes in two main clusters. CONCLUSIONS: Nutritional profile differentiated the genotypes from two countries into separate groups. However, some of the varieties were closely associated and indicated the success of global wheat exchange programs. While most of the correlations were in agreement with the previous studies, non-association of zinc with grain protein content directed towards its control by some other genetic factors. Some of the experimental wheat varieties with promising nutrient content have been suggested for future wheat advancement programs. Results obtained will be supportive for breeders involved in wheat biofortification programs, food industries and people relying on whole grain wheat products.

16.
Z Naturforsch C J Biosci ; 71(7-8): 273-85, 2016.
Article in English | MEDLINE | ID: mdl-27356235

ABSTRACT

Recent studies indicate an extremely high level of tolerance to boron (B) toxicity in Puccinellia distans (Jacq.) Parl. but the mechanistic basis is not known. Puccinellia distans was exposed to B concentrations of up to 1000 mg B L-1 and root B uptake, growth parameters, B and N contents, H2O2 accumulation and ·OH-scavenging activity were measured. Antioxidant enzyme activities including superoxide dismutase (SOD), ascorbate peroxidase, catalase, peroxidase and glutathione reductase, and lipid peroxidation products were determined. B appears to be actively excluded from roots. Excess B supply caused structural deformations in roots and leaves, H2O2 accumulation and simultaneous up-regulation of the antioxidative system, which prevented lipid peroxidation even at the highest B concentrations. Thus, P. distans has an efficient root B-exclusion capability and, in addition, B tolerance in shoots is achieved by a well-regulated antioxidant defense system.


Subject(s)
Boron/metabolism , Plant Leaves/physiology , Plant Roots/physiology , Plant Shoots/physiology , Poaceae/physiology , Adaptation, Physiological , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Biological Transport , Catalase/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Nitrogen/metabolism , Peroxidase/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Poaceae/metabolism , Reactive Oxygen Species/metabolism , Soil/chemistry , Superoxide Dismutase/metabolism , Time Factors
17.
AoB Plants ; 72015 Jul 17.
Article in English | MEDLINE | ID: mdl-26187605

ABSTRACT

Genetic diversity among plant species offers prospects for improving the plant characteristics. Its assessment is necessary to help tackle the threats of environmental fluctuations and for the effective exploitation of genetic resources in breeding programmes. Although wheat is one of the most thoroughly studied crops in terms of genetic polymorphism studies, phylogenetic affinities of Indian and Turkish Triticum species have not been assessed to date. In this study, genetic association of 95 tetraploid and hexaploid wheat genotypes originating from India and Turkey was determined for the first time. Combined analysis of random amplified polymorphic DNA and inter-simple sequence repeat markers disclosed 177 polymorphic bands, and both the dendrogram and two-dimensional scatterplot showed similar groupings of the wheat genotypes. Turkish hexaploid varieties were basically divided into two clusters, one group showed its close association with Indian hexaploid varieties and the other with Indian tetraploid varieties. Analysis of molecular variance revealed high (77 %) genetic variation within Indian and Turkish populations. Population structure analysis elucidated distinct clustering of wheat genotypes on the basis of both geographical origin and ploidy. The results revealed in this study will support worldwide wheat breeding programmes and assist in achieving the target of sustainable wheat production.

18.
J Trace Elem Med Biol ; 29: 208-15, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25468191

ABSTRACT

The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.


Subject(s)
Alveolar Process/physiology , Bone Density/drug effects , Boron/pharmacology , Diet , Dietary Supplements , Minerals/analysis , Tooth/physiology , Alveolar Process/diagnostic imaging , Alveolar Process/drug effects , Animals , Biomechanical Phenomena/drug effects , Body Weight/drug effects , Feeding Behavior/drug effects , Female , Hardness , Multivariate Analysis , Principal Component Analysis , Rabbits , Tooth/anatomy & histology , Tooth/drug effects , X-Ray Microtomography
19.
J Trace Elem Med Biol ; 27(2): 148-53, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22944583

ABSTRACT

An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet.


Subject(s)
Bone and Bones/metabolism , Boron/pharmacology , Diet , Energy Intake/drug effects , Feeding Behavior/drug effects , Minerals/metabolism , Animals , Bone Density/drug effects , Bone and Bones/anatomy & histology , Bone and Bones/drug effects , Bone and Bones/physiology , Female , Femur/anatomy & histology , Femur/drug effects , Femur/physiology , Principal Component Analysis , Rabbits , Tibia/anatomy & histology , Tibia/drug effects , Tibia/physiology
20.
Article in English | MEDLINE | ID: mdl-22014997

ABSTRACT

OBJECTIVE: The objective of this in vitro study was to assess the effect of several chelating agents on the mineral content of root dentin. STUDY DESIGN: Extracted human mandibular incisor roots were prepared and divided into groups according to the following irrigation protocols: 1) 17% ethylenediaminetetraacetic acid (EDTA); 2) 10% citric acid solution; 3) 18% etidronate; 4) 2.25% peracetic acid; 5) and deionized water (control). Dentin chips were obtained (Gates-Glidden nos. 3, 4, and 5). The levels of different minerals were analyzed with the use of inductively coupled plasma-atomic emission spectrometry (ICP-AES). RESULTS: 1) Peracetic acid significantly decreased P, K, Mg, Na, and S levels compared with the other groups (P < .05). 2) S decreased by different levels in all of the chelating solutions (P < .05), and the greatest decrease was observed in peracetic acid. 3) Ca levels significantly decreased in peracetic acid, citric acid, and EDTA (P < .05). 4) Mn levels significantly decreased in the citric acid and peracetic acid groups (P < .05). 5) Na and Zn levels significantly decreased in the peracetic acid, citric acid, and etidronate groups (P < .05). CONCLUSIONS: The chelation agents can create different effects on mineral contents of root dentin, so it is important to know what effects each solution will have on root dentin before their clinical use. In addition, according to the results of this in vitro study, it might be recommended that peracetic acid, in particular, should be used with caution.


Subject(s)
Chelating Agents/pharmacology , Dental Pulp Cavity/drug effects , Dentin/drug effects , Minerals/analysis , Root Canal Irrigants/pharmacology , Calcium/analysis , Citric Acid/pharmacology , Edetic Acid/pharmacology , Etidronic Acid/pharmacology , Humans , Incisor/drug effects , Magnesium/analysis , Manganese/analysis , Materials Testing , Peracetic Acid/pharmacology , Phosphorus/analysis , Potassium/analysis , Sodium/analysis , Spectrophotometry, Atomic , Sulfur/analysis , Water , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...