Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Exp Toxicol ; 40(2): 325-341, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32840387

ABSTRACT

To assess the chondroprotective effect and influence of N,N'-bis(1,5-dimethyl-2-phenyl-1,2-dihydro-3-oxopyrazol-4-yl) sebacamide (dpdo) that was synthesized through the reaction of phenazone with sebacoyl chloride and screened for its biological activity especially as anti-arthritic and anti-inflammatory agent in a monoiodoacetate (MA)-induced experimental osteoarthritis (OA) model. Thirty male albino rats weighing "190-200 g" were divided randomly into three groups (10 each): control, MA-induced OA, and MA-induced OA + dpdo. In MA-induced OA rat, the tumor necrosis factor alpha, interleukin 6, C-reactive protein, rheumatoid factors, reactive oxygen species, as well as all the mitochondrial markers such as mitochondria membrane potential, swelling mitochondria, cytochrome c oxidase (complex IV), and serum oxidative/antioxidant status (malondialdehyde level and activities of myeloperoxidase and xanthine oxidase) are elevated. Also, the activity of succinate dehydrogenase (complex II), levels of ATP, the level of glutathione (GSH), and thiol were markedly diminished in the MA-induced OA group compared to the normal control rats. These findings showed that mitochondrial function is associated with OA pathophysiological alterations and high gene expressions of (IL-6, TNF-a, and IL-1b) and suggests a promising use of dpdo as potential ameliorative agents in the animal model of OA and could act as anti-inflammatory agent in case of severe infection with COVID-19. It is clearly appeared in improving the bone cortex and bone marrow in the treated group with the novel compound in histological and transmission electron microscopic sections which is a very important issue today in fighting severe infections that have significant effects on the blood indices and declining of blood corpuscles like COVID-19, in addition to declining the genotoxicity and inflammation induced by MA in male rats. The novel synthesized compound was highly effective in improving all the above mentioned parameters.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Osteoarthritis/drug therapy , SARS-CoV-2 , Adenosine Triphosphate/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Bone and Bones/drug effects , Bone and Bones/pathology , Bone and Bones/ultrastructure , C-Reactive Protein/analysis , Cytochromes c/metabolism , Cytokines/metabolism , Disease Models, Animal , Glutathione/metabolism , Iodoacetic Acid , Lipid Peroxidation/drug effects , Male , Matrix Metalloproteinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/physiology , Osteoarthritis/chemically induced , Osteoarthritis/metabolism , Osteoarthritis/pathology , Rats , Reactive Oxygen Species/metabolism , Succinate Dehydrogenase/metabolism
2.
Hum Exp Toxicol ; 40(1): 183-202, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32857622

ABSTRACT

This study aimed to evaluate the synergistic effects of both vanillin (V) and chitosan nanoparticles (CNPs) in alleviating hepatotoxicity, oxidative injury, and genotoxicity induced by d-galactose (DG) and resulted from aging in male albino rats. Male Wistar rats were divided into seven groups (10 rats/group) as follows: control group, (DG) group (100 mg/kg), (V) group (100 mg/kg), CNPs either (low dose (LD) or CNPs (high dose (HD) (140 mg/kg) and (280 mg/kg), and CNPs (LD and HD) dose with V- and DG plus V-treated groups. The CNPs were characterized by transmission electron microscopy (TEM), zeta potential, and size distribution of nanoparticles. After 60 consecutive days of exposure, some biochemical parameters were measured as hepatic aminotransferases enzymes, lipid profile, tumor necrosis factor alpha, interleukin-6 (IL-6), markers of inflammation, tissue damage lactate dehydrogenase, C-reactive protein (CRP), mitochondrial potential activities, myeloperoxidase, xanthine oxidase, CRP, succinate dehydrogenase, mitochondria membrane potential, malondialdehyde levels and antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), and adenosine triphosphate content with histological, alkaline comet assay, and TEM examination of the hepatic tissues. CNPs showed that size distribution (polydispersity index) 0.350 nm and the zeta potential measurement of CNPs were found to be -14.9 mV which revealed the high stability of CNPs. DG induced biochemical and cellular alterations in the hepatic tissues. CNPs and V synergistically afforded protection against hepatic injury and oxidative stress resulting from aging that was induced by DG. Consequently, CNPs were an effective agent in the drug delivery in the hepatic diseases medications and act as a carrier for V and thus make synergistic effect between CNPs and V that achieved the high antioxidant capacities. CNPs and V improved the hepatic enzymes, which act as anti-inflammatory and antigenotoxicity, and improved the antioxidant capacities in the hepatic tissues.


Subject(s)
Antioxidants/pharmacology , Benzaldehydes/pharmacology , Chitosan/pharmacology , Animals , Anti-Inflammatory Agents , Catalase , Chemical and Drug Induced Liver Injury , DNA Damage , Glutathione , Lipid Peroxidation , Liver , Male , Malondialdehyde , Nanoparticles , Oxidative Stress , Rats , Rats, Wistar , Reactive Oxygen Species , Superoxide Dismutase
3.
Hum Exp Toxicol ; 36(11): 1212-1221, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28988495

ABSTRACT

Oxidative stress caused by sodium valproate (SV) is known to play a key role in the pathogenesis of brain tissue. The present study was designed to evaluate the protective effect of l-cysteine (LC) on the antioxidants of brain tissue of rats. The animals were divided into six groups: control group 1 was treated with saline as vehicle, groups 2 and 3 were treated with low and high doses of SV (100 and 500 mg/kg, respectively), group 4 was treated with LC (100 mg/kg), and groups 5 and 6 were treated with low-dose SV + LC and high-dose SV + LC, respectively. All the groups were treated orally by gastric tube for 30 successive days. Some antioxidant parameters were determined. Brain tissue (cerebral cortex) of SV-treated animals showed an increase in lipid peroxidation (LPO) and reduction in activity of enzymatic antioxidant and total antioxidant levels. Histopathological examination of cerebral cortex of SV rats showed astrocytic swelling, inflammation, and necrosis. After 4 weeks of the combination treatment of SV and LC daily, results showed significant improvement in the activity of cathepsin marker enzymes and restored the structure of the brain. LC was able to ameliorate oxidative stress deficits observed in SV rats. LC decreased LPO level and was also able to restore the activity of antioxidant enzymes as well as structural deficits observed in the brain of SV animals. The protective effect of LC in SV-treated rats is mediated through attenuation of oxidative stress, suggesting a therapeutic role for LC in individuals treated with SV.


Subject(s)
Antioxidants/metabolism , Brain/drug effects , Cysteine/pharmacology , Oxidative Stress , Valproic Acid/toxicity , Animals , Anticonvulsants/adverse effects , Biomarkers , Brain/metabolism , Glutathione Peroxidase , Lipid Peroxidation , Male , Rats , Rats, Wistar , Superoxide Dismutase
4.
J Biol Regul Homeost Agents ; 29(3): 619-36, 2015.
Article in English | MEDLINE | ID: mdl-26403400

ABSTRACT

Four new complexes of Hg (II), Pb (II), Sn (II) and Bi (III) with indomethacin drug ligand (IMC) were synthesized and characterized by using infrared, electronic, 1H-NMR spectral, thermogravimetric and conductivity measurements. The IMC was found to act as bidentate chelating agent. IMC complexes coordinate through the oxygen of the carboxyl group. The molar ratio chelation is 1:2 (M2+:IMC) with general formula [M (IMC) 2], nH2O for Hg (II), Pb(II) and Sn(II), but 1:3 for Bi(III) ions. Antibacterial screening of these heavy metal complexes against Escherichia coli (Gram-ve), Bacillus subtilis (Gram +ve) and anti-fungi (Asperagillus oryzae, Asperagillus niger, Asperagillus Flavus) were investigated. In the present study, we found evidence suggesting that Bi+3/IMC possesses the capacity to protect the stomach, sperm, testes, cellular ATP, cellular NAD, INSL3, PGD2, PGE2 and antioxidant enzymes from deleterious actions of IMC.


Subject(s)
Anti-Bacterial Agents , Bacteria/growth & development , Gastric Mucosa/metabolism , Indomethacin , Metals, Heavy , Oxidative Stress/drug effects , Reproduction/drug effects , Testis/metabolism , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Indomethacin/analogs & derivatives , Indomethacin/chemical synthesis , Indomethacin/chemistry , Indomethacin/pharmacology , Male , Metals, Heavy/chemistry , Metals, Heavy/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...