Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 71(10): 766-774, 2023.
Article in English | MEDLINE | ID: mdl-37779078

ABSTRACT

One of the most lethal cancers, glioblastoma (GBM), affects 14.5% of all central nervous system (CNS) tumors. Patients diagnosed with GBM have a meager median overall survival (OS) of 15 months. Extensive genetic analysis has shown that many dysregulated pathways, including the Wnt/ß-catenin signaling system, contribute to the pathogenicity of GBM. Paclitaxel (PTX) and temozolomide (TMZ) are recognized to have therapeutic potential in several types of cancer, including GBM. This work aimed to examine the impact of PTX and TMZ on the human glioma cell lines U251 and T98G using molecular docking simulations and gene expression profiles in the Wnt/ß-catenin signaling pathway. Standard procedure for Molecular Docking simulation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay, and Flow Cytometry assay was used. Genes implicated in the Wnt/ß-catenin signaling pathway, including Dvl, Axin, APC, ß-catenin, and glycogen synthase kinase3-ß (GSK3ß), were subjected to real-time PCR. The estimated parameters for targets revealed that the average binding energy and inhibition constant (Ki) for the DVL, ß-Catenin, and GSK3ß, when targeted by PTX, were - 5.01 kcal/mol, - 5.4 kcal/mol, and - 9.06 kcal/mol, respectively. This energy range was - 6.34 kcal/mol for DVL, - 5.52 kcal/mol for ß-Catenin, and - 5.66 kcal/mol for GSK3ß as a result of TMZ's inhibitory actions. Gene expression analyses indicated that PTX and PTX/TMZ suppressed GSK3ß (p < 0.05). GSK3ß from the Wnt/ß-catenin signaling pathway was significantly targeted by PTX alone, and adding TMZ to PTX may improve the efficacy of glioblastoma treatment. In addition, the GSK3ß gene may help GBM therapy strategies as a potential PTX target.


Subject(s)
Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Molecular Docking Simulation , beta Catenin/genetics , beta Catenin/metabolism , beta Catenin/therapeutic use , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Wnt Signaling Pathway , Paclitaxel/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Gene Expression , Cell Proliferation
2.
Article in English | MEDLINE | ID: mdl-36078284

ABSTRACT

Water- and food-related health issues have received a lot of attention recently because food-poisoning bacteria, in particular, are becoming serious threats to human health. Currently, techniques used to detect these bacteria are time-consuming and laborious. To overcome these challenges, the colorimetric strategy is attractive because it provides simple, rapid and accurate sensing for the detection of Salmonella spp. bacteria. The aim of this study is to review the progress regarding the colorimetric method of nucleic acid for Salmonella detection. A literature search was conducted using three databases (PubMed, Scopus and ScienceDirect). Of the 88 studies identified in our search, 15 were included for further analysis. Salmonella bacteria from different species, such as S. Typhimurium, S. Enteritidis, S. Typhi and S. Paratyphi A, were identified using the colorimetric method. The limit of detection (LoD) was evaluated in two types of concentrations, which were colony-forming unit (CFU) and CFU per mL. The majority of the studies used spiked samples (53%) rather than real samples (33%) to determine the LoDs. More research is needed to assess the sensitivity and specificity of colorimetric nucleic acid in bacterial detection, as well as its potential use in routine diagnosis.


Subject(s)
Colorimetry , Nucleic Acids , Humans , Limit of Detection , Salmonella/genetics , Sensitivity and Specificity
3.
Polymers (Basel) ; 14(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145871

ABSTRACT

A medication's approximate release profile should be sustained in order to generate the desired therapeutic effect. The drug's release site, duration, and rate must all be adjusted to the drug's therapeutic aim. However, when designing drug delivery systems, this may be a considerable hurdle. Electrospinning is a promising method of creating a nanofibrous membrane since it enables drugs to be placed in the nanofiber composite and released over time. Nanofiber composites designed through electrospinning for drug release purposes are commonly constructed of simple structures. This nanofiber composite produces matrices with nanoscale fiber structure, large surface area to volume ratio, and a high porosity with small pore size. The nanofiber composite's large surface area to volume ratio can aid with cell binding and multiplication, drug loading, and mass transfer processes. The nanofiber composite acts as a container for drugs that can be customized to a wide range of drug release kinetics. Drugs may be electrospun after being dissolved or dispersed in the polymer solution, or they can be physically or chemically bound to the nanofiber surface. The composition and internal structure of the nanofibers are crucial for medicine release patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...