Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IBRO Neurosci Rep ; 14: 235-243, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37388489

ABSTRACT

Full-term amniotic fluid stem cell (AFSC) is an underexplored reserve of broadly multipotent stem cells with potential applications in cell replacement therapy. One aspect worth exploring is the potential of AFSCs to differentiate into neural lineages. Previously, we have shown that full-term AFSC lines established from term gestation amniotic fluid, known as R3 and R2, differentiated into neural lineage through the monolayer adherent method suggesting their neurogenic potential. The neural commitment of the cells through the formation of multicellular aggregates has never been shown before. Here, we explored the ability of R3 to commit to neural fate via the formation of three-dimensional multicellular aggregates, namely embryoid bodies (EBs) and neurospheres, exhibiting distinct characteristics resembling EBs and neurospheres as obtained from other published pluripotent and neural stem cells (NSCs), respectively. Different cell seeding densities of the cells cultured in their respective induction medium generated two distinct types of aggregates with the appropriate sizes for EBs (300-350 µm) and neurospheres (50-100 µm). The neurospheres expressed a significantly high level of Nestin than EBs. However, EBs stained positive for TUJ1, suggesting the presence of early post-mitotic neurons representing the ectodermal lineage. In contrast, the presence of the NSC population in neurosphere culture was validated with positive expression of Sox1. Notably, dissociated cells from both aggregates differentiated into MAP2-positive neural cells, highlighting the ability of both types of multicellular aggregates to commit to the neural fate. In conclusion, this study highlights the first evidence of neurosphere formation from full-term AFSCs in addition to neural fate commitment via EBs formation. Findings from this study allow researchers to select the suitable approach for neural cell generation and expansion according to research needs.

2.
Reprod Biol ; 17(1): 9-18, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28262444

ABSTRACT

Amniotic fluid (AF) is now known to harbor highly potent stem cells, making it an excellent source for cell therapy. However, most of the stem cells isolated are from AF of mid-term pregnancies in which the collection procedure involves an invasive technique termed amniocentesis. This has limited the access in getting the fluid as the technique imposes certain level of risks to the mother as well as to the fetus. Alternatively, getting AF from full-term pregnancies or during deliveries would be a better resolution. Unfortunately, very few studies have isolated stem cells from AF at this stage of gestation, the fluid that is merely discarded. The question remains whether full-term AF harbors stem cells of similar potency as of the stem cells of mid-term AF. Here, we aim to review the prospect of having this type of stem cells by first looking at the origin and contents of AF particularly during different gestation period. We will then discuss the possibility that the AF, at full term, contains a population of highly potent stem cells. These stem cells are distinct from, and probably more potent than the AF mesenchymal stem cells (AF-MSCs) isolated from full-term AF. By comparing the studies on stem cells isolated from mid-term versus full-term AF from various species, we intend to address the prospect of having highly potent amniotic fluid stem cells from AF of full-term pregnancies in human and animals.


Subject(s)
Amniotic Fluid/cytology , Fetal Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Stem Cell Research , Amniocentesis/adverse effects , Animals , Cell Differentiation , Female , Humans , Medical Waste , Multipotent Stem Cells/cytology , Pluripotent Stem Cells/cytology , Pregnancy , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Term Birth
3.
Res Vet Sci ; 102: 89-99, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26412526

ABSTRACT

Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.


Subject(s)
Amniotic Fluid/cytology , Cell Differentiation , Stem Cells/physiology , Animals , Biomarkers , Cell Line , Female , Pregnancy , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...