Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pharmacol Toxicol ; 24(1): 9, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759887

ABSTRACT

BACKGROUND: Seizures are considered to be the most common symptom encountered in emergency- rushed tramadol-poisoned patients; accounting for 8% of the drug-induced seizure cases. Although, diazepam clears these seizures, the risk of central respiratory depression cannot be overlooked. Henceforth, three adsorbing composites were examined in a tramadol acute intoxication mouse model. METHODS: Calcium Silicate (Wollastonite) either non-doped or wet doped with iron oxide (3%Fe2O3) or zinc oxide (30% ZnO) were prepared. The composites' adsorption capacity for tramadol was determined in vitro. Tramadol intoxication was induced in Swiss albino mice by a parenteral dose of 120 mg/kg. Proposed treatments were administered within 1 min at 5 increasing doses, i.p. The next 30 min, seizures were monitored as an intoxication symptom. Plasma tramadol concentration was recorded after two hours of administration. RESULTS: The 3% Fe2O3-containing composite (CSFe3), was found to be composed of mainly wollastonite with very little alpha-hematite. On the other hand, hardystonite and wellimite were developed in the 30%ZnO-containing composite (CSZn3). Micro-round and irregular nano-sized microstructures were established (The particle size of CS was 56 nm, CSFe3 was 49 nm, and CSZn3 was 42 nm). The CSZn3 adsorption capacity reached 1497 mg of tramadol for each gram. Tramadol concentration was reduced in plasma and seizures were inhibited after its administration to mice at three doses. CONCLUSION: The calcium silicate composite doped with ZnO presented a good resolution of tramadol-induced seizures accompanied by detoxification of blood, indicating its potential for application in such cases. Further studies are required.


Subject(s)
Tramadol , Zinc Oxide , Mice , Animals , Zinc Oxide/toxicity , Calcium Compounds , Seizures/chemically induced , Seizures/drug therapy , Analgesics, Opioid/adverse effects
2.
Saudi Dent J ; 34(6): 485-493, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36092524

ABSTRACT

Objective: To evaluate bioactivity and osteogenic potential of calcium silicate (CS)-doped iron oxide (Fe2O3) nanoparticles versus pure CS in the reconstruction of induced critical-sized mandibular defects. Design: CS-doped Fe2O3 was prepared; morphological and microstructure identification of nanoparticles were made. An in vivo randomised design was developed on 24 adult male dogs where four critical-sized mandibular defects were created in each dog. Bone defects were allocated into control, CS, CS-3% Fe2O3 and CS-10% Fe2O3 group. Dogs were euthanized at 1 and 3 months (12 dog/time) for histopathologic and histomorphometric evaluation. Results: At three months, bone formation and maturation were evident where mean ± SD percent of mature bone was 2.66 ± 1.8, 9.9 ± 2.5, 22.9 ± 4.9, and 38.6 ± 8.1 in control, CS, CS-3% Fe2O3, and CS-10% Fe2O3 groups respectively. A high significant (P < 0.001) increase in area percent of mature bone was recorded in CS, CS-3% Fe2O3, and CS- 10% Fe2O3 groups compared to control group (73%, 88% and 93.3% respectively). Significant increase (P < 0.001) in area of mature bone was recorded in CS-3% Fe2O3 and CS-10% Fe2O3 groups compared to CS group. A significant increase (P < 0.001) in area of mature bone formation was detected in CS-10% Fe2O3 group compared to other groups. Conclusion: CS-doped Fe2O3 has good osteoconductive, biocompatible properties with promoted bone regeneration. Fe2O3 has synergistic effect in combination with CS to promote bone formation. Increasing concentration of Fe2O3 nanoparticles resulted in improved osteogenesis and maturation. Results suggests that the novel CS-Fe2O3 alloplasts could be used for reconstruction of critical-sized bone defects.

3.
Heliyon ; 6(6): e04085, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32529074

ABSTRACT

Hydroxyapatite (HA) nanoparticles derived from mussel shells were prepared using the wet precipitation method and were tested on human mesenchymal and epithelial cells. Shells and HA powder were characterized via X-ray diffraction analysis (XRD) and scanning electron microscopy along with energy dispersive X-ray spectroscopy (SEM/EDX), high resolution transmission electron microscopy (HR-TEM) and Fourier transform infrared spectroscopy (FTIR). The in vitro cytotoxic properties of HA and mussel shells were determined using sulphorhodamine B (SRB) assays for MCF-7 cells (HepG2) and colon (Caco-2) cells. Cell viability tests confirmed the nontoxic effects of synthesized HA and mussel shells on human mesenchymal stem cells (h-MSCs) and epithelial cells. Toxicity values were less than 50% of the cell's validity ratio based on analyses using different concentrations (from 0.01 to 1,000 µg). The results indicate that MSC and epithelial cell attachment and proliferation in the presence of both HA and shell occurred. The proliferation capability was established after 3 and 7 days. SEM images revealed that stem cells and epithelial cells attached to the scaffold indicated full and complete integration between the cells and the material. It seems that due to the ion exchange between bovine serum albumin solutions (BSA) and HA, the FTIR data confirmed an increase in the amide I and amide II bands, which indicates the compatibility of the BSA helix structure. This study sheds light on the importance of merging stem cells and nanomaterials that may lead to improvements in tissue engineering to develop novel treatments for various diseases.

4.
Glob Chall ; 2(10): 1800048, 2018 Oct.
Article in English | MEDLINE | ID: mdl-31565310

ABSTRACT

Silver nanoparticles (AgNPs) have become known as a broad-spectrum antimicrobial agent. The antimicrobial activity of AgNPs is dependent on the particle size and the dispersion status. In this study, a simple and effective approach is developed for sequestering the biosynthesized AgNPs in silica composites during the gel formation of MCM-41. Composites with different Ag concentrations of 0.034% (Ag1@MCM-41), 0.151% (Ag2@MCM-41), and 0.369% (Ag3@MCM-41) are synthesized and then heated at 400 °C to produce Ag1@MCM-41H, Ag2@MCM-41H, and Ag3@MCM-41H, respectively. The samples are characterized by flame atomic absorption spectrometry, Fourier-transform infrared spectroscopy, X-ray diffraction, N2 physisorption, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis. The AgNPs are confirmed to be highly dispersed in the amorphous silica framework. The antimicrobial activity of the AgNP-silica samples is investigated against Staphylococcus aureus, Escherichia coli, and Candida albicans using the cup-plate and the plate-count techniques. The results show an excellent antimicrobial effect of these samples against the studied microorganisms. Importantly, the AgNP-silica samples are found to be stable up to 58 months under ambient conditions. These stable and powerful antimicrobial composites provide a more practical and effective strategy for combating biomedical pathogens and public health threats.

5.
Appl Biochem Biotechnol ; 176(8): 2225-41, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26100387

ABSTRACT

Macrococcus bovicus was locally isolated from soil and used in the green synthesis of nano-scaling silver (NSAg). It was immobilized on a sodic-montmorillonite clay (MMT1) and cetyltrimethylammonium bromide-modified montmorillonite (MMT2) which was also calcined at 300 °C (MMT3). The NSAg clays were characterized by X-ray fluorescence, Fourier transform infrared spectra, X-ray diffractometry, surface area measurement, UV-Vis spectrometry, scanning electron microscope, transmission electron microscope and thermogravimetric analysis. NSAg was confirmed to be included in the interparticular cavities of the clay sheets and its mechanical stability was evidenced. The antimicrobial activity of the NSAg-modified clays was investigated against Staphylococcus aureus, Escherichia coli and Candida albicans using the cup plate and the plate count techniques. The antimicrobial activity of the NSAg clays was confirmed and attributed to the caging of NSAg in MMT cavities. MMT3 was found to inhibit the microbial growth to as high as 65 % as observed from the plate count method. Graphical Abstract Scheme of the biosynthesis of nano-scaling Ag and its immobilization and antimicrobial application.


Subject(s)
Aluminum Silicates/chemistry , Anti-Infective Agents/pharmacology , Bentonite/pharmacology , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Staphylococcaceae/metabolism , Clay , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Staphylococcaceae/drug effects , Staphylococcus aureus/drug effects , Thermogravimetry , X-Ray Diffraction
6.
J Mater Sci Mater Med ; 23(9): 2069-80, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22648420

ABSTRACT

Osteoconductive bioglasses, free of K(2)O and Al(2)O(3) and with content of Na(2)O lower than 10 mol%, were designed based on the ratio (SiO(2) + MgO)/(P(2)O(5) + CaO + Na(2)O) in the system Na(2)O-CaO-MgO-P(2)O(5)-SiO(2). The developed glasses have shown a strong potential for the formation of hydroxycarbonated apatite (HCA) in vitro. The particles of HCA aggregates tend to be of finer size with increasing the ratio of (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) in the glass chemical composition indicating significant bioactivity. Critical size bone defects created in the femurs of albino adult female rats, and grafted with the glass particles for 12 weeks post implantation, were completely healed by filling with mineralized bone matrix without infection showing a strong potential for new bone formation in vivo. Osteoblasts and osteocytes were observed close to the surface of the granular implants with active areas of bone deposition, resorption and remodelling. The bioglass with lowest (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) ratio has shown the highest bioactivity while the bioglass with the highest (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) has shown the lowest bioactivity. The newly formed bone in vivo has shown a similar structure to that of the original bone as indicated by the histology and microstructural results. In addition, Ca/P molar ratio of the newly formed bone was found to be (~1.67), which is similar to that of the original bone.


Subject(s)
Bone Substitutes/chemical synthesis , Bone Substitutes/pharmacology , Ceramics , Glass/chemistry , Magnesium Oxide/chemistry , Materials Testing , Animals , Body Fluids/metabolism , Body Fluids/physiology , Bone Cements/chemical synthesis , Bone Cements/chemistry , Bone Cements/pharmacokinetics , Bone Substitutes/chemistry , Calcium Compounds/chemistry , Ceramics/chemical synthesis , Ceramics/chemistry , Ceramics/pharmacology , Female , Femur/injuries , Femur/metabolism , Immersion , Oxides/chemistry , Phosphorus Compounds/chemistry , Rats , Silicon Dioxide/chemistry , Sodium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...