Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(4): 5194-5206, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34417700

ABSTRACT

Water contamination due to release of dye containing effluents is one of the environmental problems of serious concern today. The present study investigate the green synthesis of zinc oxide nanoparticles (ZnO-NPs) doped on activated carbon (AC) prepared from walnut peel extract and to estimate its efficiency in the removal of Eosin Y (Eo-Y) and Erythrosine B (Er-B) from its aqueous solution. The synthesized AC-ZnO was identified by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and the Brunauer-Emmett-Teller. The influence of various parameters such as pH, dosage of AC-ZnO, contact time, and concentrations of Eo-Y and Er-B was also studied. The pH 3 was observed as the optimum pH while the equilibrium was noticed to reach in 30 min at dosage of 1 g/L and initial concentration 100 mg/L for Eo-Y and Er-B adsorption onto AC-ZnO. The maximum adsorption capacity of Eo-Y and Er-B onto AC-ZnO was found to be 163.9 and 144.92 mg/g (and removal efficiencies of 95.11 and 98.31 %), respectively. The process of Eo-Y and Er-B adsorption on AC-ZnO was observed to be depended on the pseudo-second-order kinetic model which indicates chemisorption processes. Langmuir adsorption isotherm model test described the removal of Eo-Y and Er-B on AC-ZnO. The thermodynamic data indicated that the adsorption was endothermic process. Also, the values, SBET and VTOTAL, for the AC-ZnO were equal to 725.65 m2/g and 0.6004 cm3/g, respectively. The results of this study exhibited that AC-ZnO was a very effective method that can be used for the removal of Eo-Y and Er-B from aqueous solutions.


Subject(s)
Juglans , Nanoparticles , Water Pollutants, Chemical , Zinc Oxide , Adsorption , Charcoal , Coloring Agents , Eosine Yellowish-(YS) , Erythrosine , Hydrogen-Ion Concentration , Kinetics , Plant Extracts , Thermodynamics , Water , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 287(Pt 1): 132114, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34481171

ABSTRACT

The adsorption techniques are extensively used in dyes, metronidazole, aniline, wastewater treatment methods to remove certain pollutants. Furfural is organic in nature, considered a pollutant having a toxic effect on humans and their environment and especially aquatic species. Due to distinct characteristics of the adsorption technique, this technique can be utilized to adsorb furfural efficiently. As an environmentally friendly technique, the pomegranate peel was used to synthesized activated carbon and nanostructure of zerovalent iron impregnated on the synthesized activated carbon. The physicochemical and crystallinity characterization was done using Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and Field emission scanning electron microscopy (FESEM). The nanoparticles are porous in structure having 821.74 m2/g specified surface area. The maximum amount of the adsorbent pores in the range of 3.08 nm shows the microporous structure and enhancement in adsorption capacity. The effects of increment in concentration of adsorbent, pH, reaction contact time and adsorbent dose, isothermal and kinetic behaviour were investigated. At the UV wavelength of 227 nm furfural adsorption was detected. The separation of the furfural from the aqueous solution was calculated at the 1 h reaction time at the composite dosage of 4 g/L, 250 mg/L adsorbent concentration and pH kept at 7. The 81.87% is the maximum removal attained by the nanocomposite in comparison to the activated carbon is 62.06%. Furfural adsorption was also analyzed by using the equations of isothermal and kinetics models. The adsorption process analysis depends on the Freundlich isotherm and Intra-particle diffusion than the other models. The maximum adsorbent of the composite was determined by the Langmuir model which is 222.22 mg/g. The furfural removal enhances as the adsorbent dose enhances. The developed zerovalent iron nanoparticles incorporated on activated carbon (AC/nZVI) from pomegranate peel extract are feasible as an efficient and inexpensive adsorbent to eliminate furfural from a liquid solution.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Adsorption , Charcoal , Furaldehyde , Humans , Iron , Kinetics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 27(29): 36732-36743, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32564327

ABSTRACT

In present research, the activated carbon was prepared by a green approach from pomegranate peel coated with zero-valent iron nanoparticles (AC-nZVI) and developed as adsorbent for the removal of amoxicillin from aqueous solution. The physicochemical properties of the AC-nZVI were investigated using XRD, FTIR, and FESEM techniques. The optimal values of the parameters for the best efficiency (97.9%) were amoxicillin concentration of 10 mg/L, adsorbent dose of 1.5 g/L, time of 30 min, and pH of 5, respectively. The adsorption equilibrium and kinetic data were fitted with the Langmuir monolayer isotherm model (qmax 40.282 mg/g, R2 0. 0.999) and pseudo-first order kinetics (R2 0.961). The reusability of the adsorbent also revealed that the adsorption efficiency decreased from 83.54 to 50.79% after five consecutive repetitions. Overall, taking into account the excellent efficiency, availability, environmental friendliness, and good regeneration, AC-nZVI can be introduced as a promising absorbent for amoxicillin from aquatic environments.


Subject(s)
Nanoparticles , Water Pollutants, Chemical/analysis , Water Purification , Adsorption , Amoxicillin , Charcoal , Iron , Kinetics , Pomegranate , Water
4.
Data Brief ; 18: 713-718, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29900225

ABSTRACT

The need for fluoride in drinking water to the extent that reduces the amount of tooth decay and the other hand does not cause dental fluorosis, has been well documented as an important fact. The aim of this research is to survey values of fluoride in drinking water in Sistan and Baluchestan. In this descriptive and analytical study, the number of 551 samples during 4 seasons of 2013 year from rural drinking water sources via rural water and Wastewater Company has been taken. The concentration of fluoride in water samples was measured using SPADNS method. Results shows that the average concentration of fluoride in drinking water supplies for the rural region of Khash, Sarbaz, Iranshahr, Saravan, Nickshahr city are 0.72 (±0.31), 0.55(±0.21), 0.33 (±0.127), 0.6 (±0.24), 0.435 (±0.23) respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...