Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 110(11): 2928-37, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23740533

ABSTRACT

Recent advances in mammalian cell culture processes have significantly increased product titers, but have also resulted in substantial increases in cell density and cellular debris as well as process and product related impurities. As such, with improvements in titer, corresponding improvements in downstream processing are essential. In this study we have developed an alternative antibody harvest process that incorporates flocculation using a novel stimulus responsive polymer, benzylated poly(allylamine), followed by depth filtration. As tested on multiple antibodies, this process demonstrates high process yield, improved clearance of cells and cell debris, and efficient reduction of aggregates, host cell proteins (HCP) and DNA. A wide operating window was established for this novel flocculation process through design of experiments condition screening and optimization. Residual levels of impurities in the Protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. In addition, efficient clearance of residual polymer was demonstrated using a fluorescence tagged polymer in the presence of a stimulus reagent. The mechanism of HCP and aggregates removal during flocculation was also explored. This novel and efficient process can be easily integrated into current mAb purification platforms, and may overcome downstream processing challenges.


Subject(s)
Antibodies/isolation & purification , Biological Products/isolation & purification , Chemical Fractionation/methods , Filtration/methods , Flocculation , Technology, Pharmaceutical/methods , Animals , CHO Cells , Cell Culture Techniques/methods , Cricetinae , Cricetulus , Humans , Recombinant Proteins/isolation & purification
2.
Biotechnol Bioeng ; 110(7): 1964-72, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23334838

ABSTRACT

Increasingly high cell density, high product titer cell cultures containing mammalian cells are being used for the production of recombinant proteins. These high productivity cultures are placing a larger burden on traditional downstream clarification and purification operations due to higher product and impurity levels. Controlled flocculation and precipitation of mammalian cell culture suspensions by acidification or using polymeric flocculants have been employed to enhance clarification throughput and downstream filtration operations. While flocculation is quite effective in agglomerating cell debris and process related impurities such as (host cell) proteins and DNA, the resulting suspension is generally not easily separable solely using conventional depth filtration techniques. As a result, centrifugation is often used for clarification of cells and cell debris before filtration, which can limit process configurations and flexibility due to the investment and fixed nature of a centrifuge. To address this challenge, novel depth filter designs were designed which results in improved primary and secondary direct depth filtration of flocculated high cell density mammalian cell cultures systems feeds, thereby providing single-use clarification solution. A framework is presented here for optimizing the particle size distribution of the mammalian cell culture systems with the pore size distribution of the gradient depth filter using various pre-treatment conditions resulting in increased depth filter media utilization and improved clarification capacity. Feed conditions were optimized either by acidification or by polymer flocculation which resulted in the increased average feed particle-size and improvements in throughput with improved depth filters for several mammalian systems.


Subject(s)
Biotechnology/methods , Filtration/methods , Recombinant Proteins/isolation & purification , Animals , CHO Cells , Cell Aggregation , Cell Count , Cell Culture Techniques , Cricetulus
3.
Biomacromolecules ; 9(3): 804-11, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18257555

ABSTRACT

We describe the construction of enzymatic nanoreactors through noncovalent envelopment of a glycoprotein by amphiphilic linear-dendritic AB or ABA copolymers. The synthetic procedure is based on the regioselective adsorption of dendritic poly(benzyl ether)-block-linear poly(ethylene glycol)-block-dendritic poly(benzyl ether) or linear poly(ethylene oxide)-block-dendritic poly(benzyl ether) copolymers onto the oxidative enzyme laccase from Trametes versicolor in aqueous medium. The complexes formed have improved catalytic activity compared with the native enzyme (77-85 nkat/mL vs 60 nkat/mL, respectively) and are more stable at elevated temperatures up to 70 degrees C. Experiments with deglycosylated laccase confirm that the glycoside fragments in the native enzyme serve as the anchor sites for the linear-dendritic copolymers. The enzymatic nanoreactors are able to effectively oxidize series of substrates: phenolic compounds (syringaldazine) and hydrophobic polyaromatic hydrocarbons (anthracene and benzo[a]pyrene) under "green" chemistry conditions.


Subject(s)
Bioreactors , Dendrimers/chemistry , Laccase/chemistry , Nanotechnology/methods , Biodegradation, Environmental , Catalysis , Dendrimers/chemical synthesis , Glycoproteins/chemistry , Oxidation-Reduction , Phenols/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Polyethylene Glycols/chemistry , Polyporales/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...