Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Biomolecules ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927025

ABSTRACT

The exosome multiprotein complex plays a critical role in RNA processing and degradation. This system governs the regulation of mRNA quality, degradation in the cytoplasm, the processing of short noncoding RNA, and the breakdown of RNA fragments. We determined two crystal structures of exosome components from Thermoplasma acidophilum (Taci): one with a resolution of 2.3 Å that reveals the central components (TaciRrp41 and TaciRrp42), and another with a resolution of 3.5 Å that displays the whole exosome (TaciRrp41, TaciRrp42, and TaciRrp4). The fundamental exosome structure revealed the presence of a heterodimeric complex consisting of TaciRrp41 and TaciRrp42. The structure comprises nine subunits, with TaciRrp41 and TaciRrp42 arranged in a circular configuration, while TaciRrp4 is located at the apex. The RNA degradation capabilities of the TaciRrp4:41:42 complex were verified by RNA degradation assays, consistent with prior findings in other archaeal exosomes. The resemblance between archaeal exosomes and bacterial PNPase suggests a common mechanism for RNA degradation. Despite sharing comparable topologies, the surface charge distributions of TaciRrp4 and other archaea structures are surprisingly distinct. Different RNA breakdown substrates may be responsible for this variation. These newfound structural findings enhance our comprehension of RNA processing and degradation in biological systems.


Subject(s)
Archaeal Proteins , Exosomes , Thermoplasma , Thermoplasma/metabolism , Exosomes/metabolism , Exosomes/chemistry , Crystallography, X-Ray , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Models, Molecular , Protein Subunits/chemistry , Protein Subunits/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosome Multienzyme Ribonuclease Complex/chemistry , RNA Stability
2.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893341

ABSTRACT

Perilla frutescens var. acuta (Lamiaceae) is widely used not only as an oil or a spice, but also as a traditional medicine to treat colds, coughs, fever, and indigestion. As an ongoing effort, luteolin-7-O-diglucuronide (1), apigenin-7-O-diglucuronide (2), and rosmarinic acid (3) isolated from P. frutescens var. acuta were investigated for their anti-adipogenic and thermogenic activities in 3T3-L1 cells. Compound 1 exhibited a strong inhibition against adipocyte differentiation by suppressing the expression of Pparg and Cebpa over 52.0% and 45.0%, respectively. Moreover, 2 inhibited the expression of those genes in a dose-dependent manner [Pparg: 41.7% (5 µM), 62.0% (10 µM), and 81.6% (50 µM); Cebpa: 13.8% (5 µM), 18.4% (10 µM), and 37.2% (50 µM)]. On the other hand, the P. frutescens var. acuta water extract showed moderate thermogenic activities. Compounds 1 and 3 also induced thermogenesis in a dose-dependent manner by stimulating the mRNA expressions of Ucp1, Pgc1a, and Prdm16. Moreover, an LC-MS/MS chromatogram of the extract was acquired using UHPLC-MS2 and it was analyzed by feature-based molecular networking (FBMN) and the Progenesis QI software (version 3.0). The chemical profiling of the extract demonstrated that flavonoids and their glycoside derivatives, including those isolated earlier as well as rosmarinic acid, are present in P. frutescens var. acuta.


Subject(s)
3T3-L1 Cells , Anti-Obesity Agents , Cinnamates , Depsides , Perilla frutescens , Plant Extracts , Rosmarinic Acid , Mice , Perilla frutescens/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Depsides/pharmacology , Depsides/chemistry , Depsides/isolation & purification , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/isolation & purification , Cinnamates/pharmacology , Cinnamates/chemistry , Cinnamates/isolation & purification , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Cell Differentiation/drug effects , Obesity/drug therapy , Obesity/metabolism , Thermogenesis/drug effects
3.
Nat Prod Rep ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717742

ABSTRACT

Covering 2016 up to the end of 2023Alpinia is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many Alpinia are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on Alpinia species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that Alpinia species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.

4.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 61-71, 2024.
Article in English | MEDLINE | ID: mdl-38417853

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays fundamental roles in neuronal survival and synaptic plasticity. Its upregulation in the brain can effectively prevent and treat central nervous system (CNS) diseases, including depression, Alzheimer's disease (AD), and Parkinson's disease (PD). BDNF is synthesized in various peripheral tissues as well as in the brain and can be transported from peripheral circulation into the brain through the blood-brain barrier. Therefore, foods that upregulate BDNF in peripheral tissues may be beneficial in preventing and treating these CNS diseases. Previously, we revealed that treatment with Chinpi (Citrus unshiu peel) and Citrus natsudaidai increased BDNF levels in the human renal adenocarcinoma cell line ACHN. Here, we evaluated the effects of 21 citrus cultivars on BDNF production in ACHN cells by measuring BDNF levels in the cell culture medium. We found that treatment with peels and pulps of 13 citrus varieties increased BDNF levels in ACHN cells. Treatment with Aurantium, Acrumen, and their hybrids citrus varieties showed a potent BDNF-upregulating effect but not with varieties belonging to Limonellus, Citrophorum, and Cephalocitrus. In addition, treatment with some of those Acrumen and its hybrid citrus species resulted in elevated levels of BDNF transcripts in ACHN cells. These results suggest that peels of many citrus cultivars contain ingredients with a potential BDNF-upregulating ability, which may be novel drug seeds for treating depression, AD, and PD. Furthermore, many citrus cultivars could be used as BDNF-upregulating foods.


Subject(s)
Alzheimer Disease , Citrus , Humans , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Up-Regulation , Alzheimer Disease/metabolism , Brain/metabolism
5.
Adv Mater ; 36(19): e2308837, 2024 May.
Article in English | MEDLINE | ID: mdl-38351715

ABSTRACT

As large molecular tertiary structures, some proteins can act as small robots that find, bind, and chaperone target protein clients, showing the potential to serve as smart building blocks in self-assembly fields. Instead of using such intrinsic functions, most self-assembly methodologies for proteins aim for de novo-designed structures with accurate geometric assemblies, which can limit procedural flexibility. Here, a strategy enabling polymorphic clustering of quaternary proteins, exhibiting simplicity and flexibility of self-assembling paths for proteins in forming monodisperse quaternary cage particles is presented. It is proposed that the enzyme protomer DegQ, previously solved at low resolution, may potentially be usable as a threefold symmetric building block, which can form polyhedral cages incorporated by the chaperone action of DegQ in the presence of protein clients. To obtain highly monodisperse cage particles, soft, and hence, less resistive client proteins, which can program the inherent chaperone activity of DegQ to efficient formations of polymorphic cages, depending on the size of clients are utilized. By reconstructing the atomic resolution cryogenic electron microscopy DegQ structures using obtained 12- and 24-meric clusters, the polymorphic clustering of DegQ enzymes is validated in terms of soft and rigid domains, which will provide effective routes for protein self-assemblies with procedural flexibility.


Subject(s)
Protein Structure, Quaternary , Serine Endopeptidases , Cryoelectron Microscopy , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism
6.
Phytochemistry ; 219: 113974, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211847

ABSTRACT

Twenty-one angular dihydropyranocoumarins and a linear furanocoumarin, including four previously undescribed compounds (1-4), were isolated from the flowers of Peucedanum japonicum (Umbelliferae). The structures of 1-4, along with their absolute stereochemistry, were determined to be (3'S,4'S)-3'-O-propanoyl-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (1), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methyl-2‴Z-butenoyl)khellactone (2), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methylbutanoyl)khellactone (3), and (3'S,4'S)-3'-O-(2″-methylpropanoyl)-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (4) using one- and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and electronic circular dichroism spectroscopy. In addition, the absolute configuration of the three angular dihydropyranocoumarins (5-7) was determined for the first time in this study. Among the previously reported compounds isolated in this study, 8 and 9 were isolated for the first time from the genus Peucedanum, whereas 10 and 11 were previously unreported and had not been isolated from P. japonicum to date. Furthermore, all isolated compounds were evaluated for their aldo-keto reductase 1C1 inhibitory activities on A549 human non-small-cell lung cancer cells. Compounds 10 and 12 exhibited substantial AKR1C1 inhibitory activities with IC50 values of 35.8 ± 0.9 and 44.2 ± 1.5 µM, respectively.


Subject(s)
Apiaceae , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Flowers , Aldo-Keto Reductases
7.
Front Microbiol ; 14: 1265308, 2023.
Article in English | MEDLINE | ID: mdl-38125566

ABSTRACT

A novel endophytic bacterium, designated DY-R2A-6T, was isolated from oat (Avena sativa L.) seeds and found to produces ß-carotene. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DY-R2A-6T had 96.3% similarity with Jiella aquimaris LZB041T, 96.0% similarity with Aurantimonas aggregate R14M6T and Aureimonas frigidaquae JCM 14755T, and less than 95.8% similarity with other genera in the family Aurantimonadaceae. The complete genome of strain DY-R2A-6T comprised 5,929,370 base pairs, consisting of one full chromosome (5,909,198 bp) and one plasmid (20,172 bp), with a G + C content was 69.1%. The overall genome-related index (OGRI), including digital DNA-DNA hybridization (<20.5%), ANI (<79.2%), and AAI (<64.2%) values, all fell below the thresholds set for novel genera. The major cellular fatty acids (>10%) of strain DY-R2A-6T were C16:0, C19:0 cyclo ω8c, and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Ubiquinone-10 was the main respiratory quinone. We identified the gene cluster responsible for carotenoid biosynthesis in the genome and found that the pink-pigment produced by strain DY-R2A-6T is ß-carotene. In experiment with Arabidopsis seedlings, co-cultivation with strain DY-R2A-6T led to a 1.4-fold increase in plant biomass and chlorophyll content under salt stress conditions, demonstrating its capacity to enhance salt stress tolerance in plants. Moreover, external application of ß-carotene to Arabidopsis seedlings under salt stress conditions also mitigated the stress significantly. Based on these findings, strain DY-R2A-6T is proposed to represent a novel genus and species in the family Aurantimonadaceae, named Jeongeuplla avenae gen. nov., sp. nov. The type strain is DY-R2A-6T (= KCTC 82985T = GDMCC 1.3014T). This study not only identified a new taxon but also utilized genome analysis to predict and confirm the production of ß-carotene by strain DY-R2A-6T. It also demonstrated the ability of this strain to enhance salt stress tolerance in plants, suggesting potential application in agriculture to mitigate environmental stress in crops.

8.
Plants (Basel) ; 12(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836116

ABSTRACT

Policosanols (PCs) are long-chain linear aliphatic alcohols that are present in the primary leaves of cereal crops, such as barley and wheat, sugar cane wax, and beeswax. PCs have been used as a nutraceutical for improving hyperlipidemia and hypercholesterolemia. However, the PC content in mutant wheat lines has not been investigated. To select highly functional wheat sprouts with a high content of PCs in wheat mutant lines developed via gamma-irradiated mutation breeding, we cultivated the sprouts of wheat mutant lines in a growth chamber with white LED light (6000 K) and analyzed the PC content in these samples using GC-MS. We studied the PC content in 91 wheat sprout samples: the original variety (Woori-mil × D-7; WS01), commercially available cv. Geumgang (WS87) and cv. Cheongwoo (WS91), and mutant lines (WS02-WS86 and WS88-WS90) developed from WS01 and WS87. Compared to WS01, 18 mutant lines exhibited a high total PC content (506.08-873.24 mg/100 g dry weight). Among them, the top 10 mutant lines were evaluated for their PC production after cultivating under blue (440 nm), green (520 nm), and red (660 nm) LED light irradiation; however, these colored LED lights reduced the total PC production by 35.8-49.7%, suggesting that the cultivation with white LED lights was more efficient in promoting PCs' yield, compared to different LED lights. Therefore, our findings show the potential of radiation-bred wheat varieties as functional foods against hyperlipidemia and obesity and the optimal light conditions for high PC production.

9.
Heliyon ; 9(9): e20179, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809399

ABSTRACT

Lung cancer, which has a high incidence and mortality rates, often metastasizes and exhibits resistance to radiation therapy. Seongsanamide B has conformational features that suggest it has therapeutic potential; however, its antitumor activity has not yet been reported. We evaluated the possibility of seongsanamide B as a radiation therapy efficiency enhancer to suppress γ-irradiation-induced metastasis in non-small cell lung cancer. Seongsanamide B suppressed non-small cell lung cancer cell migration and invasion caused by γ-irradiation. Furthermore, it suppressed γ-irradiation-induced upregulation of Bcl-XL and its downstream signaling molecules, such as superoxide dismutase 2 (SOD2) and phosphorylated Src, by blocking the nuclear translocation of phosphorylated STAT3. Additionally, seongsanamide B markedly modulated the γ-irradiation-induced upregulation of E-cadherin and vimentin. Consistent with the results obtained in vitro, while seongsanamide B did not affect xenograft tumor growth, it significantly suppressed γ-irradiation-induced metastasis by inhibiting Bcl-XL/SOD2/phosphorylated-Src expression and modulating E-cadherin and vimentin expression in a mouse model. Thus, seongsanamide B may demonstrate potential applicability as a radiation therapy efficiency enhancer for lung cancer treatment.

10.
Exp Mol Med ; 55(5): 1013-1022, 2023 05.
Article in English | MEDLINE | ID: mdl-37121976

ABSTRACT

The serum glycoprotein leucine-rich ɑ-2-glycoprotein 1 (LRG1), primarily produced by hepatocytes and neutrophils, is a multifunctional protein that modulates various signaling cascades, mainly TGFß signaling. Serum LRG1 and neutrophil-derived LRG1 have different molecular weights due to differences in glycosylation, but the impact of the differential glycan composition in LRG1 on its cellular function is largely unknown. We previously reported that LRG1 can promote both angiogenic and neurotrophic processes under hyperglycemic conditions by interacting with LPHN2. Here, we determined the crystal structure of LRG1, identifying the horseshoe-like solenoid structure of LRG1 and its four N-glycosylation sites. In addition, our biochemical and cell-biological analyses found that the deglycosylation of LRG1, particularly the removal of glycans on N325, is critical for the high-affinity binding of LRG1 to LPHN2 and thus promotes LRG1/LPHN2-mediated angiogenic and neurotrophic processes in mouse tissue explants, even under normal glucose conditions. Moreover, the intracavernous administration of deglycosylated LRG1 in a diabetic mouse model ameliorated vascular and neurological abnormalities and restored erectile function. Collectively, these data indicate a novel role of LRG1 glycans as molecular switches that can tune the range of LRG1's cellular functions, particularly the LRG1/LPHN2 signaling axis.


Subject(s)
Glycoproteins , Signal Transduction , Animals , Male , Mice , Disease Models, Animal , Glycoproteins/metabolism , Glycosylation
11.
Front Nutr ; 10: 1334344, 2023.
Article in English | MEDLINE | ID: mdl-38188878

ABSTRACT

Wheat (Triticum aestivum Linn.; Poaceae) is the second most cultivated food crop among all global cereal crop production. The high carbohydrate content of its grains provides energy, multiple nutrients, and dietary fiber. After threshing, a substantial amount of wheat hull is produced, which serves as the non-food component of wheat. For the valorization of these by-products as a new resource from which functional components can be extracted, the hull from the seeds of cultivated wheat mutant lines bred after γ-irradiation were collected. Untargeted metabolite analysis of the hull of the original cultivar (a crossbreeding cultivar., Woori-mil × D-7) and its 983 mutant lines were conducted using ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry technique. A total of 55 molecules were tentatively identified, including 21 compounds found in the Triticum species for the first time and 13 compounds not previously described. Among them, seven flavonolignans with a diastereomeric structure, isolated as a single compound from the hull of T. aestivum in our previous study, were used as the standards in the metabolite analysis. The differences in their collision cross-section values were shown to contribute to the clear distinction between tricine-lignan stereoisomers. To select functionally active agents with anti-inflammatory activity among the identified compounds, the wheat hull samples were evaluated for their inhibitory effect on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. As a result of multivariate analysis based on the results of chemical and biological profiles of the wheat hull samples, 10 metabolites were identified as key markers, contributing to the distinction between active and inactive mutant lines. Considering that one of the four key markers attributed to anti-inflammatory activity has been identified to be a flavonolignan, the wheat hull could be a valuable source of diverse tricin-lignan type compounds and used as a natural health-promoting product in food supplements.

12.
BMC Health Serv Res ; 22(1): 1321, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335361

ABSTRACT

BACKGROUND: Public reporting has been considered effective in reducing health care costs by mitigating information asymmetry in the market as payers have incorporated publicly available information mandates into pay-for-performance programs and value-based purchasing. Therefore, hospitals have faced increasing pressures to provide price transparency. Despite the widespread promotion of healthcare transparency, the effectiveness of public reporting has not yet been sufficiently understood. This study analyzed the impact of transparency policy and competition on hospital costs by taking the state operations of all-payer claims databases (APCDs) as a case of interest. METHODS: We employed a fixed-effects regression, which allows the generation of hospital-specific effects, in accordance with the suggestion by the Hausman test. The study samples comprise nonprofit and for-profit general acute care hospitals in the United States for 2011-2017. The finalized dataset ranges from 3547 observations in 2011 to 3405 observations in 2015 after removing missing values. RESULTS: We found that hospitals in the states with APCDs tend to bear higher average operating expenses than those without APCDs, which may indicate that states maintaining higher healthcare expenditures are more attentive to a price transparency initiative and tend to adopt APCDs. With regard to competition, the results showed that weak market competition is significantly associated with higher operating costs, supporting the traditional competition theory. However, the combined effect of APCDs and competition did not indicate a significant association with operating expenses. Further investigation showed a continued tendency for a weak intensity of competition to be linked to lower hospital operating costs in states without APCDs. For those located in non-APCD adopted states, market consolidation helped hospitals coordinate care more effectively, economize operating costs, and enjoy economies of scale due to their large size. Similar trends did not appear in APCD-adopted states except for in 2015. CONCLUSIONS: This study observed limited evidence of the impact of APCDs and market competition. Our findings suggest that states need to make multifaceted efforts to contain hospital costs, not solely depending on the rollout of cost information or market competition. Market concentration may lead to coordinated care or cost economization in some cases. Still, the existing literature also demonstrates some potentially harmful impacts of increased concentration in the healthcare market, such as inefficient use of resources, unilateral market power, and deterrence of innovation. The introduction of a price transparency tool may require additional policy actions that take market competition into consideration.


Subject(s)
Hospital Costs , Reimbursement, Incentive , United States , Humans , Health Expenditures , Databases, Factual , Hospitals
13.
Molecules ; 27(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36364218

ABSTRACT

Peucedanum japonicum (Umbelliferae) is widely distributed throughout Southeast Asian countries. The root of this plant is used in traditional medicine to treat colds and pain, whereas the young leaves are considered an edible vegetable. In this study, the differences in coumarin profiles for different parts of P. japonicum including the flowers, roots, leaves, and stems were compared using ultra-performance liquid chromatography time-of-flight mass spectrometry. Twenty-eight compounds were tentatively identified, including three compounds found in the genus Peucedanum for the first time. Principal component analysis using the data set of the measured mass values and intensities of the compounds exhibited distinct clustering of the flower, leaf, stem, and root samples. In addition, their anticancer activities were screened using an Aldo-keto reductase (AKR)1C1 assay on A549 human non-small-cell lung cancer cells and the flower extract inhibited AKR1C1 activity. Based on these results, seven compounds were selected as potential markers to distinguish between the flower part versus the root, stem, and leaf parts using an orthogonal partial least-squares discriminant analysis. This study is the first to provide information on the comparison of coumarin profiles from different parts of P. japonicum as well as their AKR1C1 inhibitory activities. Taken together, the flowers of P. japonicum offer a new use related to the efficacy of overcoming anticancer drug resistance, and may be a promising source for the isolation of active lead compounds.


Subject(s)
Apiaceae , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Apiaceae/chemistry , Coumarins/pharmacology , Aldo-Keto Reductases
14.
Plants (Basel) ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365348

ABSTRACT

Esculeoside A and tomatine are two major steroidal alkaloids in tomato fruit (Solanum lycopersicum) that exhibit anti-inflammatory, anticancer, and anti-hyperlipidemia activities. Tomatine contained in immature tomato fruit is converted to esculeoside A as the fruit matures. To develop new tomato varieties based on the content analysis of functional secondary metabolites, 184 mutant lines were generated from the original cultivar (S. lycopersicum cv. Micro-Tom) by radiation breeding. Ultra-performance liquid chromatography coupled with evaporative light scattering detector was used to identify the mutant lines with good traits by analyzing tomatine and esculeoside A content. Compared with the original cultivar, candidates for highly functional cultivars with high esculeoside A content were identified in the mature fruit of the mutant lines. The mutant lines with low and high tomatine content at an immature stage were selected as edible cultivars due to toxicity reduction and as a source of tomatine with various pharmacological activities, respectively. During the process of ripening from green to red tomatoes, the rate of conversion of tomatine to esculeoside A was high in the green tomatoes with a low tomatine content, whereas green tomatoes with a high tomatine content exhibited a low conversion rate. Using methanol extracts prepared from unripe and ripe fruits of the original cultivar and its mutant lines and two major compounds, we examined their cytotoxicity against FaDu human hypopharynx squamous carcinoma cells. Only tomatine exhibited cytotoxicity with an IC50 value of 5.589 µM, whereas the other samples did not exhibit cytotoxicity. Therefore, radiation breeding represents a useful tool for developing new cultivars with high quality, and metabolite analysis is applicable for the rapid and objective selection of potential mutant lines.

15.
J Agric Food Chem ; 70(40): 13002-13014, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36167496

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are indispensable analytical tools to provide chemical fingerprints in metabolomics studies. The present study evaluated radiation breeding wheat lines for chemical changes by non-targeted NMR-based metabolomics analysis of bran extracts. Multivariate analysis following spectral binning suggested pyrrole-2-carbaldehydes as chemical markers of four mutant lines with distinct NMR fingerprints in a δH range of 9.28-9.40 ppm. Further NMR and MS data analysis, along with chromatographic fractionation and synthetic preparation, aimed at structure identification of marker metabolites and identified five pyrrole-2-carbaldehydes. Quantum-mechanical driven 1H iterative full spin analysis (QM-HiFSA) on synthetic pyrrole-2-carbaldehydes provided a precise description of complex peak patterns. Biological evaluation of pyrrole-2-carbaldehydes was performed with nine synthetic products, and six compounds showed hepatoprotective effects via modulation of reactive oxygen species production. Given that three out of five identified in wheat bran of radiation were described for hepatoprotective activity, the value of radiation mutation to greatly enhance pyrrole-2-carbaldehyde production was supported.


Subject(s)
Dietary Fiber , Metabolomics , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry , Metabolomics/methods , Pyrroles , Reactive Oxygen Species
16.
Article in English | MEDLINE | ID: mdl-36011425

ABSTRACT

High body mass index (BMI) may influence muscle strength, muscle thickness (Mtk), and fiber composition. We evaluated these parameters in 31 and 27 women grouped in non-oral contraceptive (non-OC) groups and OC groups, respectively, and further divided them into groups based on BMI: BMIlow, BMInorm, and BMIhigh. Maximum isometric force (Fmax), Mtk, and the relative percentage of muscle fiber composition (%) were examined in both groups. Fmax and Mtk values were significantly greater in the BMIhigh than the BMIlow within the OC group. However, there was no significant difference in the non-OC group. BMIlow and BMInorm groups showed a difference in the distribution of muscle fiber types 1 and 2 with almost the same proportions in both non-OC and OC groups. However, the BMIhigh group showed a difference in the distribution of muscle fiber types 1 and 2, with type 1 about 18.76% higher in the non-OC group. Contrastively, type 2 was about 34.35% higher in the OC group. In this study, we found that there was a significant difference in Fmax and Mtk according to the BMI level in the OC group, but no significant difference was found in the non-OC group. Moreover, the distribution of type 2 muscle fibers tended to be higher in the OC group of BMIhigh, although the sample size was small. Therefore, although no significant difference of Fmax and Mtk was found according to BMI level in the non-OC group in this study, the increase in BMI level appeared to be more associative of muscle strength in the OC group. Based on the present results, future studies are needed that consider the BMI level as well as the presence or absence of OC in future research about women's muscle strength.


Subject(s)
Body Composition , Muscle Strength , Body Mass Index , Female , Humans , Muscle Strength/physiology
17.
Front Nutr ; 9: 950505, 2022.
Article in English | MEDLINE | ID: mdl-35811944

ABSTRACT

[This corrects the article DOI: 10.3389/fnut.2021.806744.].

18.
Nat Commun ; 13(1): 4112, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840571

ABSTRACT

SLITRK2 is a single-pass transmembrane protein expressed at postsynaptic neurons that regulates neurite outgrowth and excitatory synapse maintenance. In the present study, we report on rare variants (one nonsense and six missense variants) in SLITRK2 on the X chromosome identified by exome sequencing in individuals with neurodevelopmental disorders. Functional studies showed that some variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects. Strikingly, these variations abolished the ability of SLITRK2 wild-type to reduce the levels of the receptor tyrosine kinase TrkB in neurons. Moreover, Slitrk2 conditional knockout mice exhibited impaired long-term memory and abnormal gait, recapitulating a subset of clinical features of patients with SLITRK2 variants. Furthermore, impaired excitatory synapse maintenance induced by hippocampal CA1-specific cKO of Slitrk2 caused abnormalities in spatial reference memory. Collectively, these data suggest that SLITRK2 is involved in X-linked neurodevelopmental disorders that are caused by perturbation of diverse facets of SLITRK2 function.


Subject(s)
Neurodevelopmental Disorders , Synapses , Animals , Cognition , Hippocampus/physiology , Mice , Mice, Knockout , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Synapses/metabolism
19.
Curr Issues Mol Biol ; 44(3): 1407-1416, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35723317

ABSTRACT

(1) Background: Three isolated compounds from Physalis alkekengi var. franchetii (PAF) have been investigated to possess a variety of biological activities. Their structures were elucidated by spectroscopic analysis (Ultraviolet (UV), High-resolution electrospray mass spectrometry (HR-ESI-Ms), and their anti-inflammatory effects were evaluated in vitro; (2) Methods: To investigate the mechanisms of action of PAF extracts and their isolated compounds, their anti-inflammatory effects were assessed in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). RAW 264.7 cells were treated with different concentrations of Physalis alkekengi var. franchetii three isolated compounds of PAF for 30 min prior to stimulation with or without LPS for the indicated times. The inflammatory cytokines, interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were determined using reverse transcription-polymerase chain (RT-PCR); (3) Results Treatment of RAW 264.7 cells with LPS alone resulted in significant increases in inflammatory cytokine production as compared to the control group (p < 0.001). However, with the treatment of isophysalin B 100 µg/mL, there was a significant decrease in the mRNA expression levels of TNF-α in LPS-stimulated raw 264.7 cells (p < 0.001). With treatment of physalin 1−100 µg/mL, there was a markedly decrease in the mRNA expression levels of TNF-α in LPS stimulated raw 264.7 (p < 0.05). Moreover, TNF-α mRNA (p < 0.05) and IL-1ß mRNA (p < 0.001) mRNA levels were significantly suppressed after treatment with 3',7-dimethylquercetin in LPS stimulated Raw 264.7 cells; (4) Conclusions: These findings suggest that three isolated compounds from can suppress inflammatory responses in LPS stimulated macrophage.

20.
BMC Womens Health ; 22(1): 150, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538569

ABSTRACT

BACKGROUND: It is suspected that hormonal fluctuations during menstruation may cause different responses to strength training in women who use oral contraceptives (OC) versus those who do not. However, previous studies that investigated the existence of such differences produced conflicting results. In this study, we hypothesized that OC use has no effect on muscle strength and hypertrophy among women undergoing strength training. Thus, we compared the differences in muscle strength and thickness among women who used OCs and those who did not. METHODS: We investigated the influence of OC use on muscle strength (Fmax), muscle thickness (Mtk), type 1-to-type 2 muscle fiber (NO) ratio, muscle fiber thickness (MFT), and nuclear-to-fiber (N/F) ratio. Seventy-four healthy young women (including 34 who used OCs and 40 who did not) underwent 12 weeks of submaximal strength training, after which Fmax was evaluated using a leg-press machine with a combined force and load cell, while Mtk was measured using real-time ultrasonography. Moreover, the NO ratio, MFT, and N/F ratio were evaluated using muscle needle biopsies. RESULTS: Participants in the non-OC and OC groups experienced increases in Fmax (+ 23.30 ± 10.82 kg and + 28.02 ± 11.50 kg respectively, p = 0.073), Mtk (+ 0.48 ± 0.47 cm2 and + 0.50 ± 0.44 cm2 respectively, p = 0.888), Fmax/Mtk (+ 2.78 ± 1.93 kg/cm2 and + 3.32 ± 2.37 kg/cm2 respectively, p = 0.285), NO ratio (type 2 fibers: + 1.86 ± 6.49% and - 4.17 ± 9.48% respectively, p = 0.169), MFT (type 2 fibers: + 7.15 ± 7.50 µm and + 4.07 ± 9.30 µm respectively, p = 0.435), and N/F ratio (+ 0.61 ± 1.02 and + 0.15 ± 0.97 respectively, p = 0.866) after training. There were no significant differences between the non-OC and OC groups in any of these parameters (p > 0.05). CONCLUSIONS: The effects of 12 weeks of strength training on Fmax, muscle thickness, muscle fiber size, and composition were similar in young women irrespective of their OC use.


Subject(s)
Resistance Training , Cohort Studies , Contraceptives, Oral/therapeutic use , Female , Humans , Male , Muscle Strength/physiology , Muscles
SELECTION OF CITATIONS
SEARCH DETAIL
...