Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Sci Signal ; 17(840): eadn8376, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861613

ABSTRACT

Uveal melanoma (UM) is the deadliest form of eye cancer in adults. Inactivating mutations and/or loss of expression of the gene encoding BRCA1-associated protein 1 (BAP1) in UM tumors are associated with an increased risk of metastasis. To investigate the mechanisms underlying this risk, we explored the functional consequences of BAP1 deficiency. UM cell lines expressing mutant BAP1 grew more slowly than those expressing wild-type BAP1 in culture and in vivo. The ability of BAP1 reconstitution to restore cell proliferation in BAP1-deficient cells required its deubiquitylase activity. Proteomic analysis showed that BAP1-deficient cells had decreased phosphorylation of ribosomal S6 and its upstream regulator, p70S6K1, compared with both wild-type and BAP1 reconstituted cells. In turn, expression of p70S6K1 increased S6 phosphorylation and proliferation of BAP1-deficient UM cells. Consistent with these findings, BAP1 mutant primary UM tumors expressed lower amounts of p70S6K1 target genes, and S6 phosphorylation was decreased in BAP1 mutant patient-derived xenografts (PDXs), which grew more slowly than wild-type PDXs in the liver (the main metastatic site of UM) in mice. BAP1-deficient UM cells were also more resistant to amino acid starvation, which was associated with diminished phosphorylation of S6. These studies demonstrate that BAP1 deficiency slows the proliferation of UM cells through regulation of S6 phosphorylation. These characteristics may be associated with metastasis by ensuring survival during amino acid starvation.


Subject(s)
Cell Proliferation , Melanoma , Signal Transduction , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Uveal Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mutation , Phosphorylation , Ribosomal Protein S6/metabolism , Ribosomal Protein S6/genetics , Stress, Physiological , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Female
2.
Foods ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38790771

ABSTRACT

Hyperlipidemia, characterized by elevated cholesterol, lipids, and triglycerides in the bloodstream, is linked to hepatic oxidative damage. Doenjang, a traditional Korean condiment made from fermented soybeans, is known for its health benefits, yet its anti-hyperlipidemic effects remain understudied. Our study aimed to assess the hypolipidemic and hepatic protective effects of Doenjang on male ICR mice fed a high-fat cholesterol diet for 8 weeks. Mice were divided into three groups: the normal diet (ND), the high-fat cholesterol diet (HD), and the Doenjang-supplemented HD diet (DS) group. Doenjang supplementation significantly regulated total cholesterol, triglycerides, LDL cholesterol, and HDL cholesterol levels compared to the HD group. It also downregulated lipogenic genes, including PPARγ, FAS, and ACC, and positively influenced the cholesterol metabolism-related genes HMGCR and LXR. Moreover, Doenjang intake increased serum glutathione levels, activated oxidative stress defense genes (NRF2, SOD, GPx1, and CAT), positively modulated inflammation genes (NF-kB and IL6) in hepatic tissue, and reduced malondialdehyde levels. Our findings highlight the effectiveness of traditional Doenjang in preventing diet-induced hyperlipidemia and protecting against hepatic oxidative damage.

3.
Heliyon ; 10(9): e30451, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726141

ABSTRACT

The current study aimed to investigate the distinct outcomes of table salt and salt in Gochujang on blood pressure (BP). Animals were divided into 3 groups, including normal diet (NS, 0.5 % NaCl), high-salt diet (HS, normal diet with 8 % NaCl), or high-salt Gochujang diet (HSG, normal diet with Gochujang containing 8 % NaCl). Compared to the NS groups, the HS group showed significantly increased systolic blood pressure (SBP), while the HSG group did not elevate SBP. The HS group had lower serum angiotensin II and aldosterone levels than the NS group, while the HSG group showed higher levels of those parameters than the HS group. The renal mRNA expression related to the renin-angiotensin-aldosterone system (RAAS) was significantly higher in the HS group than the NS group, while the HSG group had markedly lower expression of those markers. The urinary and fecal Na+/K+ proportion was higher in both HS and HSG groups relative to the NS group, but the HSG group showed a decreased Na+/K+ ratio in urine and feces compared to the HS group. Moreover, the HS group had a significantly upregulated mRNA level of Na+/HCO3- co-transporter (Slc4a4) in the kidney than the NS group, whereas the HSG group showed downregulated mRNA expression of Slc4a4 compared to the HS group. This study demonstrates that Gochujang has anti-hypertensive effects regardless of its high salt content and provide the evidence regarding the distinct impacts between salt in Gochujang and the table salt.

4.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38613001

ABSTRACT

The increased life expectancy and the occurrence of premature menopause prolong the mean postmenopausal phase in women's lifespans. Although the roles of poor socioeconomic status (SES), anthropometric characteristics, and nutritional status in premature menopause and the health of postmenopausal women are well understood, the differences in nutritional status and metabolic syndrome (MetS) prevalence in postmenopausal women depending on their menopause age are less explored. Furthermore, the association between SES and MetS risk in postmenopausal women is not studied. Thus, this study aimed to compare distinct nutritional status and MetS risk between women with premature menopause and natural menopause. Additionally, the association among SES, health-related lifestyle behaviors (HLBs), and MetS risk in postmenopausal women was studied. This study included 31,799 postmenopausal women from the 8th National Health and Nutrition Examination Survey (KNHANES). The relationship between disease prevalence and nutrient intake of the subjects was analyzed using analysis of variance (GLM), and Scheffé test was performed. Multiple logistic regression analysis was used to evaluate the association among SES, HLBs, and MetS as well as premature menopause. Women with premature menopause showed poor SES, anthropometric characteristics, and HLBs compared with women with natural menopause. Additionally, premature menopausal women had markedly lower intakes of protein, polyunsaturated fatty acid, n-3 fatty acid, and ß-carotene, but higher intakes of energy, carbohydrate, saturated fatty acid, and sugar than women with natural menopause (p < 0.0001). Premature menopausal women showed significantly higher MetS prevalence by having hypertriglyceridemia (p < 0.0001), hypertension (p = 0.0145), and reduced HDL cholesterol levels (p < 0.0001) relative to natural menopausal women. Furthermore, our findings indicate a substantial link among SES, HLBs, and the risk of premature menopause. In postmenopausal women, deteriorating SES and HLBs appear to influence the prevalence of MetS. Notably, our study reveals that higher intakes of protein, calcium, phosphate, and iron are correlated with a lower risk of developing MetS. These observations suggest that proactive nutritional education for premature menopausal women is necessary to improve MetS risk and their nutritional status. Also, SES-dependent interventions regarding nutrition and HLBs in postmenopausal women will be significant to lower MetS risk, MetS-derived chronic disease, and mortality in postmenopausal women.


Subject(s)
Menopause, Premature , Metabolic Syndrome , Humans , Female , Nutritional Status , Cross-Sectional Studies , Metabolic Syndrome/epidemiology , Nutrition Surveys , Postmenopause , Prevalence , Republic of Korea/epidemiology
5.
Mol Carcinog ; 63(4): 688-700, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224261

ABSTRACT

Gastric cancer (GC) is a prevalent malignancy of the digestive system. Distant metastasis and chemotherapy resistance are the crucial obstacles to prognosis in GC. Recent research has discovered that the glucose-6-phosphatase catalytic subunit (G6PC) plays an important role in tumor malignant development. However, little evidence has highlighted its role in GC. Herein, through a comprehensive analysis including profiling of tissue samples and functional validation in vivo and in vitro, we identify G6PC as a crucial factor in GC tumorigenesis. Importantly, we found that the FOXO1/G6PC axis could accelerate GC cell proliferation, metastasis, and 5-Fluorouracil (5-FU) resistance by targeting the PI3K/AKT/mTOR signaling pathway, implicating that as a prospective therapeutic approach in GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism
6.
J Biol Chem ; 299(12): 105418, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923138

ABSTRACT

Most uveal melanoma cases harbor activating mutations in either GNAQ or GNA11. Despite activation of the mitogen-activated protein kinase (MAPK) signaling pathway downstream of Gαq/11, there are no effective targeted kinase therapies for metastatic uveal melanoma. The human genome encodes numerous understudied kinases, also called the "dark kinome". Identifying additional kinases regulated by Gαq/11 may uncover novel therapeutic targets for uveal melanoma. In this study, we treated GNAQ-mutant uveal melanoma cell lines with a Gαq/11 inhibitor, YM-254890, and conducted a kinase signaling proteomic screen using multiplexed-kinase inhibitors followed by mass spectrometry. We observed downregulated expression and/or activity of 22 kinases. A custom siRNA screen targeting these kinases demonstrated that knockdown of microtubule affinity regulating kinase 3 (MARK3) and serine/threonine kinase 10 (STK10) significantly reduced uveal melanoma cell growth and decreased expression of cell cycle proteins. Additionally, knockdown of MARK3 but not STK10 decreased ERK1/2 phosphorylation. Analysis of RNA-sequencing and proteomic data showed that Gαq signaling regulates STK10 expression and MARK3 activity. Our findings suggest an involvement of STK10 and MARK3 in the Gαq/11 oncogenic pathway and prompt further investigation into the specific roles and targeting potential of these kinases in uveal melanoma.


Subject(s)
Melanoma , Protein Serine-Threonine Kinases , Uveal Neoplasms , Humans , Cell Line, Tumor , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/genetics , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteomics , Uveal Neoplasms/drug therapy , Uveal Neoplasms/enzymology , Uveal Neoplasms/genetics
7.
J Med Food ; 26(11): 858-867, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37862057

ABSTRACT

Soy sauce (SS) is a traditional fermented seasoning. Although fermented foods have diverse health beneficial effects, SS intake has been discouraged because of its high salt level. This study was designed to evaluate the antiobesity outcomes of SS and the potential involvement of salt content in SS by adding a high-salt group. Sprague-Dawley rats were randomly assigned into four groups: normal diet (ND, 10% fat of total kcal), high-fat diet (HD, 60% fat of total kcal), HD with salt water (HDSW, NaCl = 8%), and HD with SS (HDSS, NaCl = 8%). SS significantly decreased HD-induced body weight gain and lipogenic gene expression without affecting food consumption. Moreover, SS also reduced hepatic injury and lipid accumulation, and also improved hyperlipidemia. Furthermore, SS decreased the mRNA levels related to obesity-derived inflammatory responses, while HDSW did not change the levels of those markers. These observations indicate that SS ameliorates obesity in HD-fed obese rats by attenuating dyslipidemia. Moreover, SS might also have an anti-inflammatory effect in HD-induced obesity, which requires further investigation. Most importantly, SS offers these beneficial effects regardless of its high salt content, implying that different dietary salt sources lead to the distinct health outcomes. In conclusion, the findings of this study improve the understanding of the functional effect of SS.


Subject(s)
Diet, High-Fat , Soy Foods , Rats , Animals , Diet, High-Fat/adverse effects , Sodium Chloride , Rats, Sprague-Dawley , Obesity/etiology , Obesity/genetics , Body Weight , Sodium Chloride, Dietary/adverse effects
8.
PLoS One ; 18(10): e0291762, 2023.
Article in English | MEDLINE | ID: mdl-37862361

ABSTRACT

The health-beneficial outcomes of doenjang, a Korean fermented food have been questioned due to its high salt content; moreover, the detailed underlying mechanisms of its health beneficial effects are not fully investigated. Thus, this study aimed to investigate doenjang's anti-obesity effects, anti-hypertensive effects, and its underlying mechanisms in high-fat diet -induced obesity. Sprague-Dawley rats fed with normal diet (ND), high-fat diet (HD), HD with 8% additive salt (HDS), or HD with doenjang containing 8% salt (HDJ) for 13 weeks. Compared to HD and HDS groups, the HDJ group had lower body and epididymal fat tissue weight gain and showed hypotrophy and hypoplasia. The RAS-related mRNA levels in the adipose tissue, including Renin and Ace were downregulated in the HDJ group compared to HD and HDS groups. Additionally, HDJ groups had significant improvements in systolic blood pressure, serum RAS-associated parameters (e.g., angiotensin II and aldosterone), renal mRNA levels related to RAS (e.g., angiotensin II receptor type 1 and 2), and aldosterone-associated mRNA expressions (e.g., mineralocorticoid receptor) in the kidney of HD-induced obese rats. Most importantly, HDS and HDJ groups showed distinct outcomes regarding adipogenesis and electrolytes metabolism, even though both diets contain a high level of salt. HDS group showed a higher epididymal fat tissue weight, mass, and adipocyte size than HDJ group. In addition, compared with HDJ group, HDS group significantly decreased the release of Na+ and K+ throughout the urine and feces. The present study addresses that doenjang has anti-obesity effects and anti-hypertensive effects by activating RAS in the adipose tissue and kidney, respectively. Additionally, this study also demonstrates that salt in doenjang and the additive salt differently influences adipogenesis and electrolytes metabolism, supporting doenjang has health advantageous effects regardless of its high salt contents.


Subject(s)
Antihypertensive Agents , Fermented Foods , Animals , Rats , Aldosterone/pharmacology , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Diet, High-Fat , Electrolytes/pharmacology , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Rats, Sprague-Dawley , Renin-Angiotensin System , Republic of Korea , RNA, Messenger/metabolism , Sodium Chloride/pharmacology , Sodium Chloride, Dietary , Glycine max/metabolism
9.
iScience ; 26(10): 107869, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37736047

ABSTRACT

Recent studies have demonstrated that CPT1A plays a critical role in tumor metabolism and progression. However, the molecular mechanisms by which CPT1A affects tumorigenicity during PAAD progression remain unclear. In the current research, the bioinformatics analysis and immunohistochemical staining results showed that CPT1A was overexpressed in PAAD tissues and that its overexpression was associated with a shorter survival time in patients with PAAD. Overexpression of CPT1A increased cell proliferation and promoted EMT and glycolytic metabolism in PAAD cells. Mechanistically, CPT1A is able to bind to Snail and facilitate PAAD progression by regulating Snail stability. In summary, our findings revealed Snail-dependent glycolysis as a crucial metabolic pathway by which CPT1A accelerates PAAD progression. Targeting the CPT1A/Snail/glycolysis axis in PAAD to suppress cell proliferation and metastatic dissemination is a new potential treatment strategy to improve the anticancer therapeutic effect and prolong patient survival.

10.
Food Funct ; 14(16): 7615-7630, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37534420

ABSTRACT

The prevalence of constipation, one of the common gastrointestinal (GI) diseases, has been gradually increasing. Gochujang, a traditional Korean fermented paste, has various microbiota and exerts diverse health beneficial effects. However, the ameliorative effect of Gochujang on constipation is unexplored. Seven-week-old ICR mice were divided into five groups: the normal group, the loperamide (LOP) group, the LOP + mosapride citrate (3 mg per kg BW, MOSA) treated group, the LOP + BMG Gochujang (2 g per kg BW) group, and the LOP + VMG Gochujang (2 g per kg BW) group. Gochujang alleviated constipation by increasing defecation frequency and water content in feces by reducing AQP3 mRNA expression. Additionally, Gochujang increased GI transit time and excitatory neurotransmitter levels and decreased inhibitory neurotransmitter levels. Moreover, Gochujang reduced mitogen-activated protein kinase (MAPK) activation and increased the c-Kit/SCF signaling pathway, suggesting that Gochujang regulates the enteric nervous system (ENS). Interestingly, BMG and VMG differently influenced the gut microbiota composition. Both Gochujang groups significantly decreased the Bacteroidetes and Firmicutes ratio compared to the LOP group. However, among Firmicutes genera, Acetatifactor was only reduced in BMG, and VMG only decreased Caproiciproducens and Acutalibacter. In summary, Gochujang effectively alleviated LOP-induced constipation outcomes regardless of their different microbial communities by ameliorating GI motility and changing the gut microbiota composition.


Subject(s)
Loperamide , Microbiota , Mice , Animals , Loperamide/adverse effects , Laxatives , Mice, Inbred ICR , Constipation/chemically induced , Constipation/drug therapy , Republic of Korea
11.
Cancers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37444561

ABSTRACT

Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM.

12.
Microorganisms ; 11(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37110334

ABSTRACT

Abnormal fat accumulation with gut microbiota dysbiosis results in hepatic inflammation by upregulating the release of lipopolysaccharide (LPS) and inflammatory cytokine. Gochujang, a traditional fermented condiment, has beneficial effects, such as anti-colonic inflammatory effects. However, Gochujang has been controversial because of its high salt content (the Korean Paradox). Thus, the present study aimed to investigate the preventative effects of Gochujang on hepatic inflammation and related gut microbiota through discussing the Korean Paradox. The mice were divided into groups including a normal diet (ND), high-fat diet (HD), HD with salt (SALT), HD with a high percentage of beneficial microbiota Gochujang (HBM), and HD with diverse beneficial microbiota Gochujang (DBM). Gochujang markedly reduced lipid accumulation, hepatic injury, and inflammation response. Furthermore, Gochujang attenuated protein expression involved in the JNK/IκB/NF-κB pathway. Additionally, Gochujang regulated the gut microbiota-derived LPS production and Firmicutes/Bacteroidetes ratio. Gochujang regulated the levels of gut microbiota such as Bacteroides, Muribaculum, Lactobacillus, and Enterorhabdus, which were correlated with hepatic inflammation. Salt did not have foregoing effects, meaning that the salt content in Gochujang did not affect its anti-inflammatory effect. In conclusion, Gochujang showed anti-hepatic inflammation effects via reduced lipid accumulation, hepatic injury, and inflammatory response together with reorganization of gut microbiota dysbiosis regardless of salt content and the difference of micro bacteria composition.

13.
J Med Food ; 26(4): 244-254, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37001177

ABSTRACT

High-fat and high-salt diets are risk factors for metabolic syndrome development. However, gochujang, which has a high salt content, possesses antiobesity properties in cell and animal models. We aimed to evaluate the effects of Sunchang traditional and modern factory produced gochujang on metabolic syndrome factors in high-fat diet (HFD)-induced obese mice. For 14 weeks, 4-week-old C57BL/6J male mice were separated into five groups and fed a normal diet (ND), a high-fat diet only (HD), a HD with salt (SALT), a HD with traditional Sunchang gochujang (TS), and HD with modern factory made Sunchang gochujang (FS). Compared to HD and SALT groups, the gochujang groups had lower body weight, blood leptin, and insulin levels with reduced Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index and improved serum and liver lipid profiles. In addition, gochujang supplemented groups exhibited a significant reduction in mRNA expression of anabolic lipid metabolism related factors; PPARγ, CEBPα, and FABP4, and a significant increase in mRNA expression of energy expenditure-related factors; PPARα and CPT1. Protein expressions of SREBP1 were downregulated in the gochujang fed groups. TS and FS intakes improved obesity in HFD-induced obese mice. Compared to the gochujang groups, the SALT group did not exhibit any of those benefits suggesting that the high salt content of gochujang has different effects compared with added salt alone. Our findings provide evidence that gochujang could be a functional food to attenuate metabolic syndrome.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Animals , Mice , Male , Mice, Obese , Diet, High-Fat/adverse effects , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Liver/metabolism , RNA, Messenger/metabolism
14.
J Bone Metab ; 29(4): 205-215, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36529863

ABSTRACT

Adequate vitamin D status is essential for bone health. New randomized controlled trials investigating the effect of vitamin D supplementation on bone health have recently been published. This position statement updates and expands on the previous 2015 position statement of the Korean Society for Bone and Mineral Research on the adequate vitamin D status for healthy older adults (age ≥ 70 years) and those at high risk of osteoporosis and fracture (adults on osteoporosis medications) to maintain serum 25-hydroxy-vitamin D (25[OH]D) levels ≥ 20 ng/mL but < 50 ng/mL. A serum 25(OH)D level of 30 ng/mL may be beneficial for those on anti-resorptives. Vitamin D can be obtained from ultraviolet light exposure and diet. To reach the target vitamin D status through intake, adults must consume at least 400 IU/day to reach 20 ng/mL and 800 to 1,000 IU/day to reach 30 ng/mL. Foods familiar to the Korean diet that are high in vitamin D content or consumed frequently enough to positively impact vitamin D status are introduced in addition to the amount required to help reach one's target vitamin D status.

15.
Nutr Res Pract ; 16(5): 549-564, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36238378

ABSTRACT

BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

16.
Oncogene ; 41(47): 5107-5120, 2022 11.
Article in English | MEDLINE | ID: mdl-36253445

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, and its abnormal metabolism affects the survival and prognosis of patients. Recent studies have found that NAD(P)H quinone oxidoreductase-1 (NQO1) played an important role in tumor metabolism and malignant progression. However, the molecular mechanisms by which NQO1 regulates lipid metabolism during HCC progression remain unclear. In this study, bioinformatics analysis and immunohistochemical results showed that NQO1 was highly expressed in HCC tissues and its high expression was closely related to the poor prognosis of HCC patients. Overexpression of NQO1 promoted the cell proliferation, epithelial-to-mesenchymal transition (EMT) process, and angiogenesis of HCC cells. Luciferase reporter assay further revealed that NQO1/p53 could induce the transcriptional activity of SREBP1, consequently regulating HCC progression through lipid anabolism. In addition, Snail protein was stabilized by NQO1/p53/SREBP1 axis and triggered the EMT process, and participated in the regulatory role of NQO1/p53/SREBP1 axis in HCC. Together, these data indicated that NQO1/SREBP1 axis promoted the progression and metastasis of HCC, and might be a potential therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Neoplasm Metastasis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
Carcinogenesis ; 43(7): 705-715, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35511493

ABSTRACT

T lymphoma invasion and metastasis 1 (Tiam1) as a tumor-associated gene specifically activates Rho-like GTPases Rac1 and implicates in the invasive phenotype of many cancers. Altering the glycolytic pathway is foreseen as a sound approach to trigger cancer regression. However, the mechanism of Tiam1 in breast cancer (BC) glycolysis reprogramming remains to be clarified. Here, we reported the Tiam1 high expression and prognostic significance in BC. In vitro and in vivo experimental assays identified the functional role of Tiam1 in promoting BC cell proliferation, metastasis and glycolysis reprogramming. Mechanistically, we showed for the first time that Tiam1 could interact with the crucial glycolytic enzyme phosphofructokinase, liver type (PFKL) and promote the evolution of BC in a PFKL-dependent manner. Moreover, miR-21-5p was found to exacerbate the BC proliferation and aggression by targeting Tiam1. Altogether, our study highlights the critical role of Tiam1 in BC development and that the miR-21-5p/Tiam1/PFKL signaling pathway may serve as a target for new anti-BC therapeutic strategies.


Subject(s)
Breast Neoplasms , Glycolysis , MicroRNAs , Phosphofructokinase-1, Liver Type , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Humans , Liver/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , Phosphofructokinase-1, Liver Type/metabolism , Phosphofructokinases/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
18.
Mol Cancer Res ; 20(8): 1260-1271, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35426938

ABSTRACT

BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that is mutated in cancer, including uveal melanoma. Loss-of-function BAP1 mutations are associated with uveal melanoma metastasis and poor prognosis, but the mechanisms underlying these effects remain unclear. Upregulation of cell-cell adhesion proteins is involved with collective migration and metastatic seeding of cancer cells. Here, we show that BAP1 loss in uveal melanoma patient samples is associated with upregulated gene expression of multiple cell adhesion molecules (CAM), including E-cadherin (CDH1), cell adhesion molecule 1 (CADM1), and syndecan-2 (SDC2). Similar findings were observed in uveal melanoma cell lines and single-cell RNA-sequencing data from uveal melanoma patient samples. BAP1 reexpression in uveal melanoma cells reduced E-cadherin and CADM1 levels. Functionally, knockdown of E-cadherin decreased spheroid cluster formation and knockdown of CADM1 decreased growth of BAP1-mutant uveal melanoma cells. Together, our findings demonstrate that BAP1 regulates the expression of CAMs which may regulate metastatic traits. IMPLICATIONS: BAP1 mutations and increased metastasis may be due to upregulation of CAMs.


Subject(s)
Melanoma , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Uveal Neoplasms , Antigens, CD , Cadherins/genetics , Cell Adhesion Molecule-1/genetics , Humans , Melanoma/pathology , Syndecan-2 , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Uveal Neoplasms/pathology
19.
Oncogene ; 41(8): 1129-1139, 2022 02.
Article in English | MEDLINE | ID: mdl-35046531

ABSTRACT

Effective therapeutic options are still lacking for uveal melanoma (UM) patients who develop metastasis. Metastatic traits of UM are linked to BRCA1-associated protein 1 (BAP1) mutations. Cell metabolism is re-programmed in UM with BAP1 mutant UM, but the underlying mechanisms and opportunities for therapeutic intervention remain unclear. BAP1 mutant UM tumors have an elevated glycolytic gene expression signature, with increased expression of pyruvate dehydrogenase (PDH) complex and PDH kinase (PDHK1). Furthermore, BAP1 mutant UM cells showed higher levels of phosphorylated PDHK1 and PDH that was associated with an upregulated glycolytic profile compared to BAP1 wild-type UM cells. Suppressing PDHK1-PDH phosphorylation decreased glycolytic capacity and cell growth, and induced cell cycle arrest of BAP1 mutant UM cells. Our results suggest that PDHK1-PDH phosphorylation is a causative factor of glycolytic phenotypes found in BAP1 mutant UM and propose a therapeutic opportunity for BAP1 mutant UM patients.


Subject(s)
Melanoma , Uveal Neoplasms
20.
J Exp Clin Cancer Res ; 41(1): 41, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35086548

ABSTRACT

BACKGROUND: Cancer cells have an imbalance in oxidation-reduction (redox) homeostasis. Understanding the precise mechanisms and the impact of the altered redox microenvironment on the immunologic reaction to tumors is limited. METHODS: We isolated exosomes from ovarian cancer cells through ultracentrifuge and characterized by Western-blots and Nanoparticle Tracking Analysis. 2D, 3D-coculture tumor model, and 3D live cell imaging were used to study the interactions between tumor cells, macrophages and CD3 T cells in vitro. The role of exosomal miR-155-5p in tumor growth was evaluated in xenograft nude mice models and immune-competent mice models. Flow cytometry and flow sorting were used to determine the expression levels of miR-155-5p and PD-L1 in ascites and splenic macrophages, and the percentages of CD3 T cells subpopulations. RESULTS: The elevation of reactive oxygen species (ROS) greatly downregulated exosomal miR-155-5p expression in tumor cells. Neutralization of ROS with N-acetyl-L-cysteine (NAC) increased the levels of miR-155-5p in tumor exosomes that were taken up by macrophages, leading to reduction of macrophage migration and tumor spheroid infiltration. We further found that programmed death ligand 1 (PD-L1) is a functional target of miR-155-5p. Co-culture of macrophages pre-treated with NAC-derived tumor exosomes or exosomal miR-155-5p with T-lymphocytes leading to an increased percentage of CD8+ T-lymphocyte and a decreased CD3+ T cell apoptosis through PD-L1 downregulation. Tumor growth in nude mice was delayed by treatment with NAC-derived tumor exosomes. Delivery of tumor exo-miR-155-5p in immune-intact mice suppressed ovarian cancer progression and macrophage infiltration, and activated CD8+ T cell function. It is of note that exo-miR-155-5p inhibited tumor growth more potently than the PD-L1 antibody, suggesting that in addition to PD-L1, other pathways may also be targeted by this approach. CONCLUSIONS: Our findings demonstrate a novel mechanism, ROS-induced down-regulation of miR-155-5p, by which tumors modulate the microenvironment that favors tumor growth. Understanding of the negative impact of ROS on the tumor immune response will improve current therapeutic strategies. Targeting miR-155-5p can be an alternative approach to prevent formation of an immunosuppressive TME through downregulation of PD-L1 and other immunosuppressive factors.


Subject(s)
B7-H1 Antigen/metabolism , Exosomes/immunology , Immunity/immunology , Macrophages/metabolism , MicroRNAs/metabolism , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...