Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neuro Oncol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989697

ABSTRACT

BACKGROUND: Managing non-functioning pituitary adenomas (NFPAs) is difficult due to limited drug treatments. Cabergoline's (CAB) effectiveness for NFPAs is debated. This study explores the role of HTR2B in NFPAs and its therapeutic potential. METHODS: We conducted screening of bulk RNA-sequencing data to analyze HTR2B expression levels in NFPA samples. In vitro and in vivo experiments were performed to evaluate the effects of HTR2B modulation on tumor growth and cell cycle regulation. Mechanistic insights into the HTR2B-mediated signaling pathway were elucidated using pharmacological inhibitors and molecular interaction assays. RESULTS: Elevated HTR2B expression was detected in NFPA samples, which was associated with increased tumor survival. Inhibition of HTR2B activity resulted in the suppression of tumor growth through modulation of the G2M cell cycle. The inhibition of HTR2B with PRX-08066 was found to block STAT3 phosphorylation and nuclear translocation by interfering with the Gαq/PLC/PKC pathway. A direct interaction between PKC-γ and STAT3 was critical for STAT3 activation. CAB was shown to activate pSTAT3 via HTR2B, reducing its therapeutic potential. However, the combination of an HTR2B antagonist with CAB significantly inhibited tumor cell proliferation in HTR2B-expressing pituitary tumor cell lines, a xenografted pituitary tumor model, and patient-derived samples. Analysis of patient-derived data indicated that a distinct molecular pattern characterized by upregulated HTR2B/PKC-γ and downregulated BTG2/GADD45A may benefit from combination treatment with CAB and PRX-08066. CONCLUSIONS: HTR2B is a potential therapeutic target for NFPAs, and its inhibition could improve CAB efficacy. A dual therapy approach may be beneficial for NFPA patients with high HTR2B expression.

2.
Genome Med ; 16(1): 60, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658971

ABSTRACT

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS: The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS: The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS: In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.


Subject(s)
Macrophages , Neuroendocrine Tumors , Pituitary Neoplasms , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/immunology , Neuroendocrine Tumors/metabolism , Pituitary Neoplasms/genetics , Pituitary Neoplasms/immunology , Pituitary Neoplasms/pathology , Pituitary Neoplasms/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Animals , Mice , Macrophages/metabolism , Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Phenotype , Apoptosis/genetics , Cell Lineage/genetics
3.
Front Endocrinol (Lausanne) ; 13: 955100, 2022.
Article in English | MEDLINE | ID: mdl-35983516

ABSTRACT

Objective: A 22-year-old man complaining erectile dysfunction underwent transsphenoidal surgery for a 2.7 cm sellar mass with total resection and was confirmed at pathology to have a lactotroph pituitary neuroendocrine tumor (PiNET). Postoperatively, the patient's PRL remained at high level and therefore accepted high-dose dopamine receptor agonist (DA) therapy. After over 3 months of bromocriptine (BRC) (15mg/day) and over 3 years of cabergoline (CAB) (3mg/week) therapy, the patient's prolactin (PRL) never achieved long-term normalization. He was diagnosed with DA-resistant lactotroph PitNET. Method: In this study, the patient was given hydroxychloroquine (HCQ) (200 mg/d) and CAB (3 mg/w) in combination for four months. His PRL level was tested by blood test every month. Results: Taking the combination therapy of HCQ and CAB, the patient's uncontrolled PRL level was normalized within one month and was maintained at the normal level thereafter. Pituitary magnetic resonance imaging (MRI) images with enhancement showed no recurrence. The patient also regained normal sexual function. Discussion: This is the first report on the combination of HCQ with CAB for the effective treatment of DA-resistant lactotroph pituitary neuroendocrine tumor in a patient, which might provide a novel treatment strategy for clinical management.


Subject(s)
Lactotrophs , Neuroendocrine Tumors , Pituitary Neoplasms , Prolactinoma , Adult , Cabergoline/therapeutic use , Ergolines/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Lactotrophs/pathology , Male , Neuroendocrine Tumors/complications , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/surgery , Pituitary Neoplasms/complications , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/surgery , Prolactin , Prolactinoma/complications , Prolactinoma/drug therapy , Prolactinoma/pathology , Young Adult
4.
Front Endocrinol (Lausanne) ; 12: 785050, 2021.
Article in English | MEDLINE | ID: mdl-34925244

ABSTRACT

Macrophages are one of the most common infiltrating immune cells and an essential component of tumor microenvironment. Macrophages and the soluble cytokines and chemokines produced play an important role in tumorigenesis, progression, invasion and metastasis in solid tumors. Despite the multiple studies in other solid tumors, there is little known about macrophages in pituitary adenomas. Recently, studies about pituitary adenoma-infiltrated macrophages have been emerging, including the immunohistochemical and immunophenotypic analysis of the pituitary adenomas and further studies into the mechanism of the crosstalk between macrophages and tumor cells in vivo and in vitro. These studies have offered us new insights into the polarization of macrophages and its role in tumorigenesis, progression and invasion of pituitary adenomas. This review describes the advances in the field of pituitary adenoma-infiltrated macrophages and the prospect of targeting macrophages as cancer therapy in pituitary adenoma.


Subject(s)
Adenoma/metabolism , Cell Transformation, Neoplastic/metabolism , Pituitary Neoplasms/metabolism , Tumor Microenvironment/physiology , Tumor-Associated Macrophages/metabolism , Adenoma/immunology , Adenoma/pathology , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , Humans , Pituitary Neoplasms/immunology , Pituitary Neoplasms/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...