Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Mol Cell Proteomics ; 23(7): 100794, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38839039

ABSTRACT

Reversible cerebral vasoconstriction syndrome (RCVS) is a complex neurovascular disorder characterized by repetitive thunderclap headaches and reversible cerebral vasoconstriction. The pathophysiological mechanism of this mysterious syndrome remains underexplored and there is no clinically available molecular biomarker. To provide insight into the pathogenesis of RCVS, this study reported the first landscape of dysregulated proteome of cerebrospinal fluid (CSF) in patients with RCVS (n = 21) compared to the age- and sex-matched controls (n  = 20) using data-independent acquisition mass spectrometry. Protein-protein interaction and functional enrichment analysis were employed to construct functional protein networks using the RCVS proteome. An RCVS-CSF proteome library resource of 1054 proteins was established, which illuminated large groups of upregulated proteins enriched in the brain and blood-brain barrier (BBB). Personalized RCVS-CSF proteomic profiles from 17 RCVS patients and 20 controls reveal proteomic changes involving the complement system, adhesion molecules, and extracellular matrix, which may contribute to the disruption of BBB and dysregulation of neurovascular units. Moreover, an additional validation cohort validated a panel of biomarker candidates and a two-protein signature predicted by machine learning model to discriminate RCVS patients from controls with an area under the curve of 0.997. This study reveals the first RCVS proteome and a potential pathogenetic mechanism of BBB and neurovascular unit dysfunction. It also nominates potential biomarker candidates that are mechanistically plausible for RCVS, which may offer potential diagnostic and therapeutic opportunities beyond the clinical manifestations.

3.
APL Bioeng ; 8(2): 026111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726021

ABSTRACT

Human platelet lysates (HPLs) from allogeneic platelet concentrates (PCs) are biomaterials, which are rich in various trophic factors, increasingly used in regenerative medicine and biotherapy. Understanding how preparation methods influence the HPL protein profile, biological function, and clinical outcomes is crucial. Our study sheds light on the proteomes and functionality of different HPLs, with the aim of advancing their scientifically grounded clinical applications. To achieve this, PCs suspended in plasma underwent three distinct processing methods, resulting in seven HPL types. We used three characterization techniques: label-free proteomics and tandem mass tag (TMT)-based quantitative proteomics, both before and after the immunodepletion of abundant plasma proteins. Bioinformatic tools assessed the proteome, and western blotting validated our quantitative proteomics data. Subsequent pre-clinical studies with fluorescent labeling and label-free proteomics were used as a proof of concept for brain diffusion. Our findings revealed 1441 proteins detected using the label-free method, 952 proteins from the TMT experiment before and after depletion, and 1114 proteins from the subsequent TMT experiment on depleted HPLs. Most detected proteins were cytoplasmic, playing key roles in catalysis, hemostasis, and immune responses. Notably, the processing methodologies significantly influenced HPL compositions, their canonical pathways, and, consequently, their functionality. Each HPL exhibited specific abundant proteins, providing valuable insight for tailored clinical applications. Immunoblotting results for selected proteins corroborated our quantitative proteomics data. The diffusion and differential effects to the hippocampus of a neuroprotective HPL administered intranasally to mice were demonstrated. This proteomics study advances our understanding of HPLs, suggesting ways to standardize and customize their production for better clinical efficacy in regenerative medicine and biotherapy. Proteomic analyses also offered objective evidence that HPPL, upon intranasal delivery, not only effectively diffuses to the hippocampus but also alters protein expression in mice, bolstering its potential as a treatment for memory impairments.

4.
Lung Cancer ; 191: 107791, 2024 May.
Article in English | MEDLINE | ID: mdl-38621342

ABSTRACT

OBJECTIVES: With the increasing popularity of CT screening, more cases of early-stage lung cancer are being diagnosed. However, 24.5% of stage I non-small-cell lung cancer (NSCLC) patients still experience treatment failure post-surgery. Biomarkers to predict lung cancer patients at high risk of recurrence are needed. MATERIALS AND METHODS: We collected protein mass spectrometry data from the Taiwan Lung Cancer Moonshot Project and performed bioinformatics analysis on proteins with differential expressions between tumor and adjacent normal tissues in 74 stage I lung adenocarcinoma (LUAD) cases, aiming to explore the tumor microenvironment related prognostic biomarkers. Findings were further validated in 6 external cohorts. RESULTS: The analysis of differentially expressed proteins revealed that the most enriched categories of diseases and biological functions were cellular movement, immune cell trafficking, and cancer. Utilizing proteomic profiling of the tumor microenvironment, we identified five prognostic biomarkers (ADAM10, MIF, TEK, THBS2, MAOA). We then developed a risk score model, which independently predicted recurrence-free survival and overall survival in stage I LUAD. Patients with high risk scores experienced worse recurrence-free survival (adjusted hazard ratio = 8.28, p < 0.001) and overall survival (adjusted hazard ratio = 6.88, p = 0.013). Findings had been also validated in the external cohorts. CONCLUSION: The risk score model derived from proteomic profiling of tumor microenvironment can be used to predict recurrence risk and prognosis of stage I LUAD.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , Lung Neoplasms , Neoplasm Staging , Proteomics , Tumor Microenvironment , Humans , Prognosis , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/metabolism , Lung Neoplasms/diagnosis , Female , Biomarkers, Tumor/metabolism , Male , Proteomics/methods , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/diagnosis , Middle Aged , Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Taiwan/epidemiology , Computational Biology/methods
6.
Clin Proteomics ; 21(1): 12, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389054

ABSTRACT

Mass spectrometry (MS) assays offer exceptional capabilities in high multiplexity, specificity, and throughput. As proteomics technologies continue advancements to identify new disease biomarkers, transition of these innovations from research settings to clinical applications becomes imperative. To meet the rigorous regulatory standards of clinical laboratories, development of a clinical protein MS assay necessitates adherence to stringent criteria. To illustrate the process, this project focused on using thyroglobulin (Tg) as a biomarker and an immuno-multiple reaction monitoring (iMRM) MS-based assay as a model for establishing a Clinical Laboratory Improvement Amendments (CLIA) compliant laboratory within the Centers of Genomic and Precision Medicine, National Taiwan University. The chosen example also illustrates the clinical utility of MS assays to complement conventional immunoassay-based methods, particularly in cases where the presence of autoantibodies in 10-30% of patients hinders accuracy. The laboratory design entails a comprehensive coordination in spatial layout, workflow organization, equipment selection, ventilation systems, plumbing, electrical infrastructure, documentation procedures, and communication protocols. Practical aspects of the transformation process, including preparing laboratory facilities, testing environments, instrument validation, assay development and validation, quality management, sample testing, and personnel competency, are discussed. Finally, concordant results in proficiency testing demonstrate the harmonization with the University of Washington Medical Center and the quality assurance of the CLIA-equivalent Tg-iMRM MS assay established in Taiwan. The realization of this model protein MS assay in Taiwan highlights the feasibility of international joint development and provides a detailed reference map to expedite the implementation of more MS-based protein assays in clinical laboratories for patient care.

7.
Nature ; 627(8004): 646-655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418879

ABSTRACT

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone1. However, there remains little consensus on the mechanism(s) of response with this combination2. Here we find that a high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients treated with atezolizumab plus tiragolumab but not with atezolizumab alone. Serum sample analysis revealed that macrophage activation is associated with a clinical benefit in patients who received the combination treatment. In mouse tumour models, tiragolumab surrogate antibodies inflamed tumour-associated macrophages, monocytes and dendritic cells through Fcγ receptors (FcγR), in turn driving anti-tumour CD8+ T cells from an exhausted effector-like state to a more memory-like state. These results reveal a mechanism of action through which TIGIT checkpoint inhibitors can remodel immunosuppressive tumour microenvironments, and suggest that FcγR engagement is an important consideration in anti-TIGIT antibody development.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents , B7-H1 Antigen , Myeloid Cells , Neoplasms , Receptors, Immunologic , T-Lymphocytes, Regulatory , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Drug Therapy, Combination , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/therapeutic use , Macrophage Activation , Myeloid Cells/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Receptors, IgG/immunology , Receptors, Immunologic/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology
8.
Cell Rep Med ; 5(2): 101393, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38280376

ABSTRACT

In metastatic urothelial cancer (mUC), cisplatin versus carboplatin leads to durable disease control in a subset of patients. The IMvigor130 trial reveals more favorable effects with atezolizumab combined with gemcitabine and cisplatin (GemCis) versus gemcitabine and carboplatin (GemCarbo). This study investigates the immunomodulatory effects of cisplatin as a potential explanation for these observations. Our findings indicate that improved outcomes with GemCis versus GemCarbo are primarily observed in patients with pretreatment tumors exhibiting features of restrained adaptive immunity. In addition, GemCis versus GemCarbo ± atezolizumab induces transcriptional changes in circulating immune cells, including upregulation of antigen presentation and T cell activation programs. In vitro experiments demonstrate that cisplatin, compared with carboplatin, exerts direct immunomodulatory effects on cancer cells, promoting dendritic cell activation and antigen-specific T cell killing. These results underscore the key role of immune modulation in cisplatin's efficacy in mUC and highlight the importance of specific chemotherapy backbones in immunotherapy combination regimens.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Urologic Neoplasms , Humans , Carboplatin/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/chemically induced , Carcinoma, Transitional Cell/pathology , Cisplatin/therapeutic use , Deoxycytidine/therapeutic use , Gemcitabine , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urologic Neoplasms/drug therapy , Urologic Neoplasms/chemically induced , Urologic Neoplasms/pathology
9.
Ecotoxicol Environ Saf ; 266: 115555, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37832483

ABSTRACT

Mitochondrial dysfunction was reported to be involved in the development of lung diseases including chronic obstructive pulmonary disease (COPD). However, molecular regulation underlying metabolic disorders in the airway epithelia exposed to air pollution remains unclear. In the present study, lung bronchial epithelial BEAS-2B and alveolar epithelial A549 cells were treated with diesel exhaust particles (DEPs), the primary representative of ambient particle matter. This treatment elicited cell death accompanied by induction of lipid reactive oxygen species (ROS) production and ferroptosis. Lipidomics analyses revealed that DEPs increased glycerophospholipid contents. Accordingly, DEPs upregulated expression of the electron transport chain (ETC) complex and induced mitochondrial ROS production. Mechanistically, DEP exposure downregulated the Hippo transducer transcriptional co-activator with PDZ-binding motif (TAZ), which was further identified to be crucial for the ferroptosis-associated antioxidant system, including glutathione peroxidase 4 (GPX4), the glutamate-cysteine ligase catalytic subunit (GCLC), and glutathione-disulfide reductase (GSR). Moreover, immunohistochemistry confirmed downregulation of GPX4 and upregulation of lipid peroxidation in the bronchial epithelium of COPD patients and Sprague-Dawley rats exposed to air pollution. Finally, proteomics analyses confirmed alterations of ETC-related proteins in bronchoalveolar lavage from COPD patients compared to healthy subjects. Together, our study discovered that involvement of mitochondrial redox dysregulation plays a vital role in pulmonary epithelial cell destruction after exposure to air pollution.


Subject(s)
Ferroptosis , Pulmonary Disease, Chronic Obstructive , Rats , Animals , Humans , Vehicle Emissions/toxicity , Reactive Oxygen Species/metabolism , Particulate Matter/metabolism , Down-Regulation , Rats, Sprague-Dawley , Lung/metabolism , Oxidation-Reduction , Epithelial Cells/metabolism , Mitochondria/metabolism
10.
Nanoscale ; 15(44): 17825-17838, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37850423

ABSTRACT

Albumin nanoparticles (NPs) and PEGylated liposomes have garnered tremendous interest as therapeutic drug carriers due to their unique physicochemical properties. These unique properties also have significant effects on the composition and structure of the protein corona formed around these NPs in a biological environment. Herein, protein corona formation on albumin NPs and liposomes was simultaneously evaluated through in vitro and simulation studies. The sizes of both types of NPs increased with more negatively charged interfaces upon being introduced into fetal bovine serum. Gel electrophoresis and label-free quantitative proteomics were performed to identify proteins recruited to the hard corona, and fewer proteins were found in albumin NPs than in liposomes, which is in accordance with isothermal titration calorimetry. The cellular uptake efficiency of the two NPs significantly differed in different serum concentrations, which was further scrutinized by loading an anticancer compound into albumin NPs. The presence of the hard protein corona increased the cellular uptake of albumin NPs in comparison with liposomes. In our simulation study, a specific receptor present in the membrane was greatly attracted to the albumin-apolipoprotein E complex. Overall, this study not only evaluated protein corona formation on albumin NPs, but also made promising advancements toward albumin- and liposome-based therapeutic systems.


Subject(s)
Nanoparticles , Protein Corona , Protein Corona/chemistry , Liposomes/chemistry , Nanomedicine , Nanoparticles/chemistry , Serum Albumin, Bovine
11.
Environ Sci Pollut Res Int ; 30(7): 18985-18997, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36223019

ABSTRACT

Physicochemical properties of nanoparticles are important in regulating nanoparticle toxicity; however, the contribution of nanoparticle charge remains unclear. The objective of this study was to investigate the pulmonary effects of inhalation of charged soot nanoparticles. We established a stably charged nanoparticle generation system for whole-body exposure in BALB/c mice, which produced positively charged, negatively charged, and neutral soot nanoparticles in a wide range of concentrations. After a 7-day exposure, pulmonary toxicity was assessed, together with proteomics analysis. The charged soot nanoparticles on average carried 1.17-1.35 electric charges, and the sizes for nanoparticles under different charging conditions were all fixed at 69 ~ 72 nm. We observed that charged soot nanoparticles induced cytotoxic LDH and increased lung permeability, with the release of 8-isoprostane and caspase-3 and systemic IL-6 in mice, especially for positively charged soot nanoparticles. Next, we observed that positive-charged soot nanoparticles upregulated Eif2, Eif4, sirtuin, mammalian target of rapamycin (mTOR), peroxisome proliferator-activated receptors (PPAR), and HIPPO-related signaling pathways in the lungs compared with negatively charged soot nanoparticles. HIF1α, sirt1, E-cadherin, and Yap were increased in mice's lungs by positively charged soot nanoparticle exposure. In conclusion, carbonaceous nanoparticles carrying electric ions, especially positive-charged, are particularly toxic when inhaled and should be of concern in terms of pulmonary health protection.


Subject(s)
Nanoparticles , Soot , Animals , Mice , Soot/chemistry , Lung , Nanoparticles/toxicity , Nanoparticles/chemistry , Administration, Inhalation , Mammals
13.
Biomedicines ; 10(5)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35625714

ABSTRACT

We demonstrate that Ha-RasV12 overexpression induces the nuclear translocation of Hippo effector Yes-associated protein (YAP) in MDCK cells via the hippo-independent pathway at the confluent stage. Ha-RasV12 overexpression leads to the downregulation of Caveolin-1 (Cav1) and the disruption of junction integrity. It has been shown that the disruption of actin belt integrity causes YAP nuclear translocation in epithelial cells at high density. Therefore, we hypothesized that Ha-RasV12-decreased Cav1 leads to the disruption of cell junction integrity, which subsequently facilitates YAP nuclear retention. We revealed that Ha-RasV12 downregulated Cav1 through the ERK pathway. Furthermore, the distribution and expression of Cav1 mediated the cell junction integrity and YAP nuclear localization. This suggests that the downregulation of Cav1 induced by Ha-RasV12 disrupted the cell junction integrity and promoted YAP nuclear translocation. We further indicated the consequence of Ha-RasV12-induced YAP activation. Surprisingly, the activation of YAP is not required for Ha-RasV12-induced multilayer cellular aggregates. Instead, Ha-RasV12 triggered the ERK-Rac pathway to promote cellular aggregate formation. Moreover, the overexpression of constitutively active Rac is sufficient to trigger cellular aggregation in MDCK cells at the confluent stage. This highlights that Rac activity is essential for cellular aggregates.

14.
Sci Rep ; 12(1): 6881, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477732

ABSTRACT

Local administration of attenuated mycobacterium has been used as a cancer treatment adjuvant to re-boost patient immune responses with variable clinical outcomes. We aimed to clarify the impact of attenuated heat-killed tuberculosis (HKTB) on tumor-associated macrophages which play critical roles in shaping immunological regulation in the tumor microenvironment. Upon HKTB stimulation, both primary macrophages derived from the peripheral blood of healthy subjects and from lung cancer patients as well as THP1-derived classically activated macrophages (Ms) and tumor-educated macrophages (TEMs) were polarized into the proinflammatory phenotype, as characterized by increased expression cluster of differentiation 86. A quantitative proteomic analysis revealed that stimulated TEMs were unable to activate the toll-like receptor 2, signal transducer and activator of transcription 1, or nuclear factor-κB signaling. Instead, they showed distinct intercellular adhesion molecule 1 signaling, impaired cell adhesion, and mitochondrial dysfunction. These molecular mechanisms might contribute to lower cytotoxicity of HKTB-stimulated TEMs against A549 cells via the release of distinct inflammatory cytokines compared to HKTB-stimulated Ms. Our study provides an unbiased and systematic interpretation of cellular and molecular alterations of HKTB-reeducated macrophages which should help illuminate potential strategies of HKTB-stimulated macrophage-based combination therapy for cancer treatment.


Subject(s)
Neoplasms , Tuberculosis , Hot Temperature , Humans , Macrophage Activation , Macrophages/metabolism , Neoplasms/pathology , Proteomics , Tumor Microenvironment
15.
Chem Biol Interact ; 351: 109763, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34852269

ABSTRACT

Air pollution has been linked to emphysema in chronic obstruction pulmonary disease (COPD). However, the underlying mechanisms in the development of emphysema due to air pollution remain unclear. The objective of this study was to investigate the role of components of the Hippo signaling pathway for E-cadherin-mediated contact inhibition of proliferation in the lungs after air pollution exposure. E-Cadherin-mediated contact inhibition of proliferation via the Hippo signaling pathway was investigated in Sprague-Dawley (SD) rats whole-body exposed to air pollution, and in alveolar epithelial A549 cells exposed to diesel exhaust particles (DEPs), E-cadherin-knockdown, and high-mobility group box 1 (HMGB1) treatment. Underlying epithelial differentiation, apoptosis, and senescence were also examined, and the interaction network among these proteins was examined. COPD lung sections were used to confirm the observations in rats. Expressions of HMGB1 and E-cadherin were negatively regulated in the lungs and A549 cells by air pollution, and this was confirmed by knockdown of E-cadherin and by treating A549 cells with HMGB1. Depletion of phosphorylated (p)-Yap occurred after exposure to air pollution and E-cadherin-knockdown, which resulted in decreases of SPC and T1α. Exposure to air pollution and E-cadherin-knockdown respectively downregulated p-Sirt1 and increased p53 levels in the lungs and in A549 cells. Moreover, the protein interaction network suggested that E-cadherin is a key activator in regulating Sirt1 and p53, as well as alveolar epithelial cell differentiation by SPC and T1α. Consistently, downregulation of E-cadherin, p-Yap, SPC, and T1α was observed in COPD alveolar regions with particulate matter (PM) deposition. In conclusion, our results indicated that E-cadherin-mediated cell-cell contact directly regulates the Hippo signaling pathway to control differentiation, cell proliferation, and senescence due to air pollution. Exposure to air pollution may initiate emphysema in COPD patients.


Subject(s)
Air Pollution/adverse effects , Cadherins/metabolism , Cell Proliferation/physiology , Contact Inhibition/physiology , Emphysema/metabolism , Hippo Signaling Pathway/physiology , A549 Cells , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Emphysema/chemically induced , HMGB1 Protein/metabolism , Hippo Signaling Pathway/drug effects , Humans , Male , Protein Interaction Maps , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/metabolism , Rats, Sprague-Dawley , YAP-Signaling Proteins/metabolism
16.
Article in English | WPRIM (Western Pacific) | ID: wpr-980118

ABSTRACT

@#The number of patients requiring intensive care has surged since the outbreak of the SARS-CoV-2 virus. This had rendered the intensive care unit (ICU) a huge challenge not only to provide care for the existing patients but also to support the COVID-19 patients. The ICU was restructured to ensure strict adherence to the infection control guidelines. The aspects of change in the ICU had been ranging from the clinical operation, medication equipment and facilities, medications supply, and staffing. Strategies required upon implementation of change include having contingency plans, being innovative, getting the collaboration from other ICUs, exchanging information, getting support from the health policymakers, and ensuring the safety of the healthcare workers. This article aimed to share the experience of challenges and strategies in managing an ICU for the COVID-19 pandemic in Malaysia.

17.
BMC Pulm Med ; 21(1): 276, 2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34598691

ABSTRACT

BACKGROUND: Systemic manifestations and comorbidities are characteristics of chronic obstructive pulmonary disease (COPD) and are probably due to systemic inflammation. The histone methyltransferase SUV39H1 controls the Th1/Th2 balance. We previously reported that reduced SUV39H1 expression contributed to abnormal inflammation in COPD. Here, we aimed to determine whether impaired SUV39H1 expression in COPD patients associated with neutrophilic/eosinophilic inflammation responses and comorbidities. METHODS: A total of 213 COPD patients and 13 healthy controls were recruited from the Shuang Ho Hospital, Taipei Medical University. SUV39H1 levels in peripheral blood mononuclear cells (PBMCs) from 13 healthy and 30 COPD participants were measured by immunoblotting. We classified the patients into two groups based on low (fold change, FC < 0.5) and high SUV39H1 expression (FC ≥ 0.5) compared to normal controls. Clinical outcomes including neutrophil or eosinophil counts associated with SUV39H1-related inflammation were evaluated by Chi square analyses or Mann-Whitney U test. The correlations between the percentage of neutrophils and number of COPD comorbidities or Charlson Comorbidity Index (CCI) scores were performed by Spearman's rank analysis. RESULTS: Low SUV39H1 expression group had high neutrophil counts relative to high SUV39H1expression group. In the COPD cohort, the high comorbidity group (≥ 2 comorbidities) had higher counts of whole white blood cell (WBC) and neutrophil, and lower proportion of eosinophil and eosinophil/neutrophil, as compared with low comorbidity group (0 and 1 comorbidities). The quantity of neutrophils was associated with COPD comorbidities (Spearman's r = 0.388, p < 0.001), but not with CCI scores. We also found that the high comorbidity group had more exacerbations per year compared with low comorbidity group (1.5 vs. 0.9 average exacerbations, p = 0.005). However, there were no significant differences between groups with these non-frequent (0-1 exacerbation) and frequent exacerbations per year (> 1 exacerbation) in numbers of WBC and proportion of neutrophils, eosinophils or eosinophil/neutrophil. Finally, patients with high comorbidities had lower SUV39H1 levels in their PBMCs than did those with low comorbidities. CONCLUSION: Blood neutrophil counts are associated with comorbidities in COPD patients. Impaired SUV39H1 expression in PBMCs from COPD patients are correlated with neutrophilic inflammation and comorbidities.


Subject(s)
Eosinophils/metabolism , Inflammation/metabolism , Methyltransferases/metabolism , Neutrophils/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Repressor Proteins/metabolism , Aged , Case-Control Studies , Comorbidity , Disease Progression , Female , Humans , Inflammation/blood , Inflammation/genetics , Leukocyte Count , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Male , Methyltransferases/genetics , Middle Aged , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/genetics , Repressor Proteins/genetics , Risk Factors , Severity of Illness Index
18.
Part Fibre Toxicol ; 18(1): 24, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172050

ABSTRACT

BACKGROUND: Exposure to air pollution exerts direct effects on respiratory organs; however, molecular alterations underlying air pollution-induced pulmonary injury remain unclear. In this study, we investigated the effect of air pollution on the lung tissues of Sprague-Dawley rats with whole-body exposure to traffic-related PM1 (particulate matter < 1 µm in aerodynamic diameter) pollutants and compared it with that in rats exposed to high-efficiency particulate air-filtered gaseous pollutants and clean air controls for 3 and 6 months. Lung function and histological examinations were performed along with quantitative proteomics analysis and functional validation. RESULTS: Rats in the 6-month PM1-exposed group exhibited a significant decline in lung function, as determined by decreased FEF25-75% and FEV20/FVC; however, histological analysis revealed earlier lung damage, as evidenced by increased congestion and macrophage infiltration in 3-month PM1-exposed rat lungs. The lung tissue proteomics analysis identified 2673 proteins that highlighted the differential dysregulation of proteins involved in oxidative stress, cellular metabolism, calcium signalling, inflammatory responses, and actin dynamics under exposures to PM1 and gaseous pollutants. The presence of PM1 specifically enhanced oxidative stress and inflammatory reactions under subchronic exposure to traffic-related PM1 and suppressed glucose metabolism and actin cytoskeleton signalling. These factors might lead to repair failure and thus to lung function decline after chronic exposure to traffic-related PM1. A detailed pathogenic mechanism was proposed to depict temporal and dynamic molecular regulations associated with PM1- and gaseous pollutants-induced lung injury. CONCLUSION: This study explored several potential molecular features associated with early lung damage in response to traffic-related air pollution, which might be used to screen individuals more susceptible to air pollution.


Subject(s)
Air Pollutants , Air Pollution , Lung Injury , Particulate Matter/toxicity , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Animals , Environmental Exposure/analysis , Environmental Pollutants , Gases/toxicity , Lung Injury/chemically induced , Particulate Matter/analysis , Rats , Rats, Sprague-Dawley
19.
Andrology ; 9(6): 1902-1910, 2021 11.
Article in English | MEDLINE | ID: mdl-34115449

ABSTRACT

BACKGROUND: Semen quality impairment is a serious consequence of testicular torsion-detorsion. Adequate germ-cell mitochondrial oxidative phosphorylation plays a crucial role in male fertility. Changes in cellular oxidative phosphorylation in testicular tissues after testicular torsion-detorsion remain unclear. OBJECTIVES: This study investigated whether testicular torsion-detorsion induces alternations of mitochondrial oxidative phosphorylation in testicular tissues. MATERIALS AND METHODS: BALB/c male mice were divided into a Sham group and a testicular torsion-detorsion group. At the end of the procedure, the mice were euthanized, and their bilateral testicles were removed. Mitochondria morphology was evaluated through transmission electron microscopy. The cellular respiratory functions of germ cells were evaluated using a Seahorse analyzer assay. The proteome profiles in testicular tissues were analyzed using liquid chromatography-tandem mass spectrometry. The differences in the expression levels of each component in the oxidative phosphorylation were revealed using Ingenuity Pathways Analysis. RESULTS: Inner mitochondrial membrane disruption was found in ipsilateral twisted testicular mitochondria in the torsion-detorsion group but not in contralateral untwisted testes. The cellular respiratory function in germ cells was significantly decreased after testicular torsion-detorsion in ipsilateral twisted testes but not in contralateral untwisted testes. Liquid chromatography-tandem mass spectrometry analysis of ipsilateral twisted testicular tissue revealed that mitochondrial proteins were differentially expressed after testicular torsion-detorsion. Testicular torsion-detorsion induced downregulation of oxidative phosphorylation and revealed alternations of specific proteins in the oxidative phosphorylation complexes. DISCUSSION AND CONCLUSION: Testicular torsion-detorsion produced mitochondria injury and dysregulation of mitochondrial oxidative phosphorylation in ipsilateral twisted testes. Different protein expressions were identified in the mitochondrial oxidative phosphorylation complexes with testicular torsion-detorsion; new therapeutic targets may be identified to restore the oxidative phosphorylation function of germ cells.


Subject(s)
Mitochondria/metabolism , Oxidative Phosphorylation , Reperfusion Injury/metabolism , Spermatic Cord Torsion/metabolism , Testis/blood supply , Animals , Cell Respiration , Disease Models, Animal , Germ Cells/metabolism , Male , Mice , Mice, Inbred BALB C , Reperfusion Injury/complications , Semen Analysis , Spermatic Cord Torsion/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...