Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Neuroimage ; 294: 120637, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714216

ABSTRACT

In recent years, brainprint recognition has emerged as a novel method of personal identity verification. Although studies have demonstrated the feasibility of this technology, some limitations hinder its further development into the society, such as insufficient efficiency (extended wear time for multi-channel EEG cap), complex experimental paradigms (more time in learning and completing experiments), and unclear neurobiological characteristics (lack of intuitive biomarkers and an inability to eliminate the impact of noise on individual differences). Overall, these limitations are due to the incomplete understanding of the underlying neural mechanisms. Therefore, this study aims to investigate the neural mechanisms behind brainwave recognition and simplify the operation process. We recorded prefrontal resting-state EEG data from 40 participants, which is followed up over nine months using a single-channel portable brainwave device. We found that portable devices can effectively and stably capture the characteristics of different subjects in the alpha band (8-13Hz) over long periods, as well as capturing their individual differences (no alpha peak, 1 alpha peak, or 2 alpha peaks). Through correlation analysis, alpha-band activity can reveal the uniqueness of the subjects compared to others within one minute. We further used a descriptive model to dissect the oscillatory and non-oscillatory components in the alpha band, demonstrating the different contributions of fine oscillatory features to individual differences (especially amplitude and bandwidth). Our study validated the feasibility of portable brainwave devices in brainwave recognition and the underlying neural oscillation mechanisms. The fine characteristics of various alpha oscillations will contribute to the accuracy of brainwave recognition, providing new insights for the development of future brainwave recognition technology.


Subject(s)
Electroencephalography , Humans , Male , Female , Adult , Electroencephalography/instrumentation , Electroencephalography/methods , Young Adult , Alpha Rhythm/physiology , Brain/physiology , Prefrontal Cortex/physiology
2.
J Affect Disord ; 355: 254-264, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38561155

ABSTRACT

BACKGROUND: The diagnosis of major depressive disorder (MDD) is commonly based on the subjective evaluation by experienced psychiatrists using clinical scales. Hence, it is particularly important to find more objective biomarkers to aid in diagnosis and further treatment. Alpha-band activity (7-13 Hz) is the most prominent component in resting electroencephalogram (EEG), which is also thought to be a potential biomarker. Recent studies have shown the existence of multiple sub-oscillations within the alpha band, with distinct neural underpinnings. However, the specific contribution of these alpha sub-oscillations to the diagnosis and treatment of MDD remains unclear. METHODS: In this study, we recorded the resting-state EEG from MDD and HC populations in both open and closed-eye state conditions. We also assessed cognitive processing using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS: We found that the MDD group showed significantly higher power in the high alpha range (10.5-11.5 Hz) and lower power in the low alpha range (7-8.5 Hz) compared to the HC group. Notably, high alpha power in the MDD group is negatively correlated with working memory performance in MCCB, whereas no such correlation was found in the HC group. Furthermore, using five established classification algorithms, we discovered that combining alpha oscillations with MCCB scores as features yielded the highest classification accuracy compared to using EEG or MCCB scores alone. CONCLUSIONS: Our results demonstrate the potential of sub-oscillations within the alpha frequency band as a potential distinct biomarker. When combined with psychological scales, they may provide guidance relevant for the diagnosis and treatment of MDD.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/psychology , Consensus , Electroencephalography , Cognition , Biomarkers
3.
Front Public Health ; 12: 1289253, 2024.
Article in English | MEDLINE | ID: mdl-38510362

ABSTRACT

Introduction: Meteorological and environmental factors can affect people's lives and health, which is crucial among the older adults. However, it is currently unclear how they specifically affect the physical condition of older adults people. Methods: We collected and analyzed the basic physical examination indicators of 41 older adults people for two consecutive years (2021 and 2022), and correlated them with meteorological and environmental factors. Partial correlation was also conducted to exclude unrelated factors as well. Results: We found that among the physical examination indicators of the older adults for two consecutive years, five indicators (HB, WBC, HbAlc, CB, LDL-C) showed significant differences across the population, and they had significantly different dynamic correlation patterns with six meteorological (air pressure, temperature, humidity, precipitation, wind speed, and sunshine duration) and seven air quality factors (NO2, SO2, PM10, O3-1h, O3-8h, CO, PM2.5). Discussion: Our study has discovered for the first time the dynamic correlation between indicators in normal basic physical examinations and meteorological factors and air quality indicators, which will provide guidance for the future development of policies that care for the healthy life of the older adults.


Subject(s)
Air Pollutants , Air Pollution , Humans , Aged , Air Pollutants/analysis , Meteorological Concepts , China , Temperature
4.
Heliyon ; 10(5): e27014, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463781

ABSTRACT

The "Big Five" European football leagues, comprising England's Premier League, Germany's Bundesliga, Spain's La Liga, Italy's Serie A, and France's Ligue 1, command significant attention. While the occurrence of goals, substitutions, and fouls in football games is often considered random, of the presence of an inherent inevitability is unclear. To investigate, we analyzed a public dataset detailing timing of goals, substitutions, and yellow cards in regular time from WhoScored across three seasons (2018-2019, 2019-2020, 2020-2021) in the top five European football leagues. We employed various mathematical descriptive models (including linear, sigmoid, and gaussian functions) to measure the temporal tendency of goals, substitutions, and yellow cards. Our results indicate that, whether in the first or second half of the match, the temporal distribution of these elements exhibits evenness a (indicative of randomness). However, specific characteristics were discerned through distinct model parameters, capturing novel phenomena that were intuitively illustrated. Furthermore, we explored the interaction of the timing of goals, substitutions, and yellow cards. In this analysis we found that scoring in the second half leads to more substitutions and yellow cards. Changing players in the second half corresponded with more goals, while the impact of yellow card fouls showed no differences in goals in the first and second halves. Our research is the first to systematically study the laws of modern football matches, providing valuable guidance and reference for many football coaches.

5.
Cogn Neurodyn ; 17(6): 1463-1472, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37974584

ABSTRACT

The importance of physical activity (PA) to people's health has become a consensus around the world, and regular long-term PA has been accepted as an alternative preventive measure for many chronic medical conditions. Although the daily PA have several benefits for the public, the systematic research on its effect in human physiology, cognition and cerebral nerve level is not fully studied. Hence, in this study, we aim to investigate this question in several specific aspects: basal heart rate, executive function, and neural oscillatory activity in the brain. A total of 146 subjects participated in this study and they were divided into two groups. One group (SG) is the long-term training (more than 8 years) subjects in soccer (n = 31), and the other group (CG) is a normal control group (n = 115). The heart rate was monitored with a portable equipment. Besides, 24 subjects (14 in SG and 10 in CG) participated the Go/No-Go task and EEG recording before and after exercise fatigue task. In the physiology level, we found that in the non-training time, the heart rate in CG group is significantly higher than that of the SG group (P < 0.001). In the cognition level, we found that the SG group has a faster reaction time that that of CG group (P < 0.01), while for the accuracy, two groups did show significant difference. In the neural level in the brain, we found a significant abnormal increased beta-band (around 25 Hz) activity in CG group after the exercise fatigue task immediately. Long-term high-intensity physical activity reduces basal heart rate, improves executive function, and improve the central tolerance of the body under the stimulation of fatigue and stress. These benefits of long-term activity could be used as a manual to guide people's healthy life.

6.
JMIR Public Health Surveill ; 9: e45199, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37318858

ABSTRACT

BACKGROUND: In the past few decades, liver disease has gradually become one of the major causes of death and illness worldwide. Hepatitis is one of the most common liver diseases in China. There have been intermittent and epidemic outbreaks of hepatitis worldwide, with a tendency toward cyclical recurrences. This periodicity poses challenges to epidemic prevention and control. OBJECTIVE: In this study, we aimed to investigate the relationship between the periodic characteristics of the hepatitis epidemic and local meteorological elements in Guangdong, China, which is a representative province with the largest population and gross domestic product in China. METHODS: Time series data sets from January 2013 to December 2020 for 4 notifiable infectious diseases caused by hepatitis viruses (ie, hepatitis A, B, C, and E viruses) and monthly data of meteorological elements (ie, temperature, precipitation, and humidity) were used in this study. Power spectrum analysis was conducted on time series data, and correlation and regression analyses were performed to assess the relationship between the epidemics and meteorological elements. RESULTS: The 4 hepatitis epidemics showed clear periodic phenomena in the 8-year data set in connection with meteorological elements. Based on the correlation analysis, temperature demonstrated the strongest correlation with hepatitis A, B, and C epidemics, while humidity was most significantly associated with the hepatitis E epidemic. Regression analysis revealed a positive and significant coefficient between temperature and hepatitis A, B, and C epidemics in Guangdong, while humidity had a strong and significant association with the hepatitis E epidemic, and its relationship with temperature was relatively weak. CONCLUSIONS: These findings provide a better understanding of the mechanisms underlying different hepatitis epidemics and their connection to meteorological factors. This understanding can help guide local governments in predicting and preparing for future epidemics based on weather patterns and potentially aid in the development of effective prevention measures and policies.


Subject(s)
Hepatitis A , Hepatitis E , Humans , Hepatitis A/epidemiology , Meteorological Concepts , China/epidemiology , Hepatitis Viruses
7.
Front Psychol ; 14: 1173711, 2023.
Article in English | MEDLINE | ID: mdl-37359853

ABSTRACT

Background: Attentional bias plays an important role in sustaining various types of drug addiction. No prior studies examined methamphetamine (MA)-associated psychosis (MAP) relationships between ERP time course and performance on an addiction Stroop task in MA abusers. The aim of the present study was to determine whether MA abusers with (MAP+) or without (MAP-) psychosis exhibit alterations of the ERP during the addiction Stroop task. Methods: Thirty-one healthy controls (CTRL), 14 MAP-, and 24 MAP+ participants were recruited and completed the addiction Stroop task during EEG recording using 32 electrodes. Group variations were compared on measures of behavioral task performance and event-related potentials (ERP) of performance monitoring (N200, P300, N450). The Barratt impulsiveness scores were analyzed to investigate correlations with ERP changes. Results: MA-related word stimulus elicited a more negative N200 amplitude over left-anterior electrodes in MAP- abusers; furthermore, a positive association between the N200 amplitude and Barratt attentional scores and non-planning scores was observed, while no such differences were found in MAP+ abusers. There were no significant differences in reaction time (RT) and error rate between each group. Conclusion: This is the first study to examine psychosis relationships between ERP time course and performance on an addiction Stroop task in MA abusers with or without psychosis. These findings support the association between attentional bias measured by the MA addiction Stroop task and N200 component as well as indicate the possibility of using this cognitive task in combination with ERP technology to detect psychosis factors among abstinent MA abusers.

8.
Neuron ; 111(12): 1914-1932.e6, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37084721

ABSTRACT

Parathyroid hormone (PTH) is one of the most important hormones for bone turnover and calcium homeostasis. It is unclear how the central nervous system regulates PTH. The subfornical organ (SFO) lies above the third ventricle and modulates body fluid homeostasis. Through retrograde tracing, electrophysiology, and in vivo calcium imaging, we identified the SFO as an important brain nucleus that responds to serum PTH changes in mice. Chemogenetic stimulation of GABAergic neurons in SFO induces decreased serum PTH followed by a decrease in trabecular bone mass. Conversely, stimulation of glutamatergic neurons in the SFO promoted serum PTH and bone mass. Moreover, we found that the blockage of different PTH receptors in the SFO affects peripheral PTH levels and the PTH's response to calcium stimulation. Furthermore, we identified a GABAergic projection from the SFO to the paraventricular nucleus, which modulates PTH and bone mass. These findings advance our understanding of the central neural regulation of PTH at cellular and circuit level.


Subject(s)
Body Fluids , Subfornical Organ , Animals , Mice , Parathyroid Hormone/pharmacology , Calcium , GABAergic Neurons
9.
Cogn Neurodyn ; 17(2): 459-466, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37007195

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with multiple associated deficits in both social and cognitive functioning. Diagnosing ASD usually relies on subjective clinical competencies, and research on objective criteria for diagnosing ASD in the early stage is still in its infancy. A recent animal study showed that the looming-evoked defensive response was impaired in mice with ASD, but whether the effect will be observed in human and contribute to finding a robust clinical neural biomarker remain unclear. Here, to investigate the looming-evoked defense response in humans, electroencephalogram responses toward looming and corresponding control stimuli (far and missing type) were recorded in children with ASD and typical developed (TD) children. Results revealed that alpha-band activity in the posterior brain region was strongly suppressed after looming stimuli in the TD group, but remained unchanged in the ASD group. This method could be a novel, objective way to detect ASD earlier. These findings suggest that further investigation of the neural mechanism underlying innate fear from the oscillatory view could be a helpful direction in the future. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09839-6.

10.
Cogn Neurodyn ; 17(2): 399-410, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37007205

ABSTRACT

Gamma-band activity was thought to be related to several high-level cognitive functions, and Gamma ENtrainment Using Sensory stimulation (GENUS, 40 Hz sensory combined visual and auditory stimulation) was found to have positive effects on patients with Alzheimer's dementia. Other studies found, however, that neural responses induced by single 40 Hz auditory stimulation were relatively weak. To address this, we included several new experimental conditions (sounds with sinusoidal or square wave; open-eye and closed-eye state) combined with auditory stimulation with the aim of investigating which of these induces a stronger 40 Hz neural response. We found that when participant´s eyes were closed, sounds with 40 Hz sinusoidal wave induced the strongest 40 Hz neural response in the prefrontal region compared to responses in other conditions. More interestingly, we also found there is a suppression of alpha rhythms with 40 Hz square wave sounds. Our results provide potential new methods when using auditory entrainment, which may result in a better effect in preventing cerebral atrophy and improving cognitive performance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09834-x.

11.
Front Public Health ; 11: 1120470, 2023.
Article in English | MEDLINE | ID: mdl-36778555

ABSTRACT

Background: The reemergence of the monkeypox epidemic has aroused great concern internationally. Concurrently, the COVID-19 epidemic is still ongoing. It is essential to understand the temporal dynamics of the monkeypox epidemic in 2022 and its relationship with the dynamics of the COVID-19 epidemic. In this study, we aimed to explore the temporal dynamic characteristics of the human monkeypox epidemic in 2022 and its relationship with those of the COVID-19 epidemic. Methods: We used publicly available data of cumulative monkeypox cases and COVID-19 in 2022 and COVID-19 at the beginning of 2020 for model validation and further analyses. The time series data were fitted with a descriptive model using the sigmoid function. Two important indices (logistic growth rate and semi-saturation period) could be obtained from the model to evaluate the temporal characteristics of the epidemic. Results: As for the monkeypox epidemic, the growth rate of infection and semi-saturation period showed a negative correlation (r = 0.47, p = 0.034). The growth rate also showed a significant relationship with the locations of the country in which it occurs [latitude (r = -0.45, p = 0.038)]. The development of the monkeypox epidemic did not show significant correlation compared with the that of COVID-19 in 2020 and 2022. When comparing the COVID-19 epidemic with that of monkeypox, a significantly longer semi-saturation period was observed for monkeypox, while a significant larger growth rate was found in COVID-19 in 2020. Conclusions: This novel study investigates the temporal dynamics of the human monkeypox epidemic and its relationship with the ongoing COVID-19 epidemic, which could provide more appropriate guidance for local governments to plan and implement further fit-for-purpose epidemic prevention policies.


Subject(s)
COVID-19 , Mpox (monkeypox) , Humans , COVID-19/epidemiology , Mpox (monkeypox)/epidemiology , Pandemics/prevention & control , Longitudinal Studies , Policy
12.
J Environ Manage ; 326(Pt B): 116815, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36442332

ABSTRACT

Water Inequality, Water Security and Water Governance are fundamental parameters that affect the sustainable use of water resources. Through policy formulation and decision-making, Water Governance determines both Water Security and Water Inequality. Largely, where Water Inequality exists, Water Security is undermined through unsustainable water use practices that lead to pollution of water resources, conflicts, hoarding of water, and poor sanitation. Incidentally, the interconnectedness of Water Governance, Water Inequality and Water Security has not been investigated previously. This study modified the Gini coefficient and used a Logistics Growth of Water Resources Model (LGWR Model) to access Water Inequality and Water Security mathematically, and discussed the connected role of Water Governance. We tested the validity of both models by calculating the actual Water Inequality and Water Security of Ghana. We also discussed the implications of Water Inequality on Water Security and the overarching role of Water Governance. The results show that regional Water Inequality is widespread in some parts. The Volta region showed the highest Water Inequality (Gini index of 0.58), while the Central region showed the lowest (Gini index of 0.15). Water Security is moderately sustainable. The use of water resources is currently stress-free. It was estimated to maintain such status until 2132 ± 18 when Ghana will consume half of the current total water resources of 53.2 billion cubic meters. Effectively, Water Inequality is a threat to Water Security, results in poverty, under-development heightens tensions in water use, and causes instability. With proper Water Governance, Water Inequality can be eliminated through formulating and implementing approaches that engender equal allocation and sustainable use of water resources.


Subject(s)
Sanitation , Water , Water Resources , Water Supply , Ghana
13.
Nat Commun ; 13(1): 6366, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289224

ABSTRACT

Microsaccades play a critical role in refreshing visual information and have been shown to have direction-specific influences on human perception. However, the neural mechanisms underlying such direction-specific effects remains unknown. Here, we report the emergence of direction-specific microsaccade modulation in the middle layer of V2 but not in V1: responses of V2 neurons after microsaccades moved toward their receptive fields were stronger than those when microsaccades moved away. The decreased responses from V1 to V2, which are correlated with the amplitude of microsaccades away from receptive fields, suggest topographically location-specific suppression from an oculomotor source. Consistent with directional effects in V2, microsaccades function as a guide for monkeys' behavior in a peripheral detection task; both can be explained by a dynamic neural network. Our findings suggest a V1-bypassing suppressive circuit for direction-specific microsaccade modulation in V2 and its functional influence on visual sensitivity, which highlights the optimal sampling nature of microsaccades.


Subject(s)
Eye Movements , Saccades , Humans , Perception , Visual Perception/physiology , Photic Stimulation , Fixation, Ocular
14.
Front Comput Neurosci ; 16: 883065, 2022.
Article in English | MEDLINE | ID: mdl-36157841

ABSTRACT

Alpha rhythms in the human electroencephalogram (EEG), oscillating at 8-13 Hz, are located in parieto-occipital cortex and are strongest when awake people close their eyes. It has been suggested that alpha rhythms were related to attention-related functions and mental disorders (e.g., Attention-deficit/hyperactivity disorder (ADHD)). However, many studies have shown inconsistent results on the difference in alpha oscillation between ADHD and control groups. Hence it is essential to verify this difference. In this study, a dataset of EEG recording (128 channel EGI) from 87 healthy controls (HC) and 162 ADHD (141 persisters and 21 remitters) adults in a resting state with their eyes closed was used to address this question and a three-gauss model (summation of baseline and alpha components) was conducted to fit the data. To our surprise, the power of alpha components was not a significant difference among the three groups. Instead, the baseline power of remission and HC group in the alpha band is significantly stronger than that of persister groups. Our results suggest that ADHD recovery may have compensatory mechanisms and many abnormalities in EEG may be due to the influence of behavior rather than the difference in brain signals.

15.
Cell Rep ; 40(7): 111221, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977486

ABSTRACT

Spatial integration of visual information is an important function in the brain. However, neural computation for spatial integration in the visual cortex remains unclear. In this study, we recorded laminar responses in V1 of awake monkeys driven by visual stimuli with grating patches and annuli of different sizes. We find three important response properties related to spatial integration that are significantly different between input and output layers: neurons in output layers have stronger surround suppression, smaller receptive field (RF), and higher sensitivity to grating annuli partially covering their RFs. These interlaminar differences can be explained by a descriptive model composed of two global divisions (normalization) and a local subtraction. Our results suggest suppressions with cascaded normalizations (CNs) are essential for spatial integration and laminar processing in the visual cortex. Interestingly, the features of spatial integration in convolutional neural networks, especially in lower layers, are different from our findings in V1.


Subject(s)
Visual Cortex , Visual Perception , Animals , Photic Stimulation/methods , Primary Visual Cortex , Primates , Visual Cortex/physiology , Visual Fields , Visual Pathways/physiology , Visual Perception/physiology
16.
Front Public Health ; 10: 903025, 2022.
Article in English | MEDLINE | ID: mdl-36033737

ABSTRACT

Background: Epidemics of infectious diseases have a great negative impact on people's daily life. How it changes over time and what kind of laws it obeys are important questions that researchers are always interested in. Among the characteristics of infectious diseases, the phenomenon of recrudescence is undoubtedly of great concern. Understanding the mechanisms of the outbreak cycle of infectious diseases could be conducive for public health policies to the government. Method: In this study, we collected time-series data for nine class C notifiable infectious diseases from 2009 to 2021 using public datasets from the National Health Commission of China. Oscillatory power of each infectious disease was captured using the method of the power spectrum analysis. Results: We found that all the nine class C diseases have strong oscillations, which could be divided into three categories according to their oscillatory frequencies each year. Then, we calculated the oscillation power and the average number of infected cases of all nine diseases in the first 6 years (2009-2015) and the next 6 years (2015-2021) since the update of the surveillance system. The change of oscillation power is positively correlated to the change in the number of infected cases. Moreover, the diseases that break out in summer are more selective than those in winter. Conclusion: Our results enable us to better understand the oscillation characteristics of class C infectious diseases and provide guidance and suggestions for the government's prevention and control policies.


Subject(s)
Communicable Diseases , Epidemics , China , Disease Outbreaks , Humans
17.
Cogn Neurodyn ; 16(4): 745-756, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35847544

ABSTRACT

Gamma-band activity, peaking around 30-100 Hz in the local field potential's power spectrum, has been found and intensively studied in many brain regions. Although gamma is thought to play a critical role in processing neural information in the brain, its cognitive functions and neural mechanisms remain unclear or debatable. Experimental studies showed that gamma rhythms are stochastic in time and vary with visual stimuli. Recent studies further showed that multiple rhythms coexist in V1 with distinct origins in different species. While all these experimental facts are a challenge for understanding the functions of gamma in the visual cortex, there are many signs of progress in computational studies. This review summarizes and discusses studies on gamma in the visual cortex from multiple perspectives and concludes that gamma rhythms are still a mystery. Combining experimental and computational studies seems the best way forward in the future.

18.
JMIR Public Health Surveill ; 8(6): e35343, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35649394

ABSTRACT

BACKGROUND: COVID-19 was first reported in 2019, and the Chinese government immediately carried out stringent and effective control measures in response to the epidemic. OBJECTIVE: Nonpharmaceutical interventions (NPIs) may have impacted incidences of other infectious diseases as well. Potential explanations underlying this reduction, however, are not clear. Hence, in this study, we aim to study the influence of the COVID-19 prevention policies on other infectious diseases (mainly class B infectious diseases) in China. METHODS: Time series data sets between 2017 and 2021 for 23 notifiable infectious diseases were extracted from public data sets from the National Health Commission of the People's Republic of China. Several indices (peak and trough amplitudes, infection selectivity, preferred time to outbreak, oscillatory strength) of each infectious disease were calculated before and after the COVID-19 outbreak. RESULTS: We found that the prevention and control policies for COVID-19 had a strong, significant reduction effect on outbreaks of other infectious diseases. A clear event-related trough (ERT) was observed after the outbreak of COVID-19 under the strict control policies, and its decreasing amplitude is related to the infection selectivity and preferred outbreak time of the disease before COVID-19. We also calculated the oscillatory strength before and after the COVID-19 outbreak and found that it was significantly stronger before the COVID-19 outbreak and does not correlate with the trough amplitude. CONCLUSIONS: Our results directly demonstrate that prevention policies for COVID-19 have immediate additional benefits for controlling most class B infectious diseases, and several factors (infection selectivity, preferred outbreak time) may have contributed to the reduction in outbreaks. This study may guide the implementation of nonpharmaceutical interventions to control a wider range of infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , China/epidemiology , Communicable Diseases/epidemiology , Disease Outbreaks/prevention & control , Humans , Pandemics/prevention & control
19.
Front Hum Neurosci ; 16: 853994, 2022.
Article in English | MEDLINE | ID: mdl-35529780

ABSTRACT

Objective: Schizophrenia is a mental disorder that is characterized by progressive cognitive impairment. Objective measures of cognitive function may provide reliable neurobiomarkers for patients with schizophrenia. The goal of the current work is to explore the correlation between resting theta power and cognitive performance in patients with schizophrenia. Methods: Twenty-two patients with schizophrenia and 23 age-, sex-, and education-matched healthy controls were included in this study. The MATRICS Consensus Cognitive Battery (MCCB) was used for cognitive evaluation and the Positive and Negative Syndrome Scale (PANSS) for evaluation of clinical symptoms. EEGs were acquired in the resting state with closed and opened eyes. Between the two groups, we compared the relative theta power and examined their relationship with cognitive performance. Results: Compared to healthy controls, patients with schizophrenia showed significantly higher theta power, both with eyes closed and open (P < 0.05). When the eyes were open, negative correlations were found in patients with schizophrenia between theta power in the central and parietal regions with processing speed scores, and between the theta power of the Pz electrode and verbal learning and reasoning and problem-solving scores (r ≥ -0.446). In the control group, theta power over the Fz electrode was negatively correlated with processing speed (r = -0.435). Conclusions: Our findings showed that theta activity increased in certain brain regions during resting state in schizophrenia. Negative associations between resting theta power (increased) over the parietal-occipital regions with MCCB domains scores (decreased) suggest that altered theta activity can be used as a neurobiological indicator to predict cognitive performance.

20.
Nat Commun ; 13(1): 286, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022404

ABSTRACT

Both surface luminance and edge contrast of an object are essential features for object identification. However, cortical processing of surface luminance remains unclear. In this study, we aim to understand how the primary visual cortex (V1) processes surface luminance information across its different layers. We report that edge-driven responses are stronger than surface-driven responses in V1 input layers, but luminance information is coded more accurately by surface responses. In V1 output layers, the advantage of edge over surface responses increased eight times and luminance information was coded more accurately at edges. Further analysis of neural dynamics shows that such substantial changes for neural responses and luminance coding are mainly due to non-local cortical inhibition in V1's output layers. Our results suggest that non-local cortical inhibition modulates the responses elicited by the surfaces and edges of objects, and that switching the coding strategy in V1 promotes efficient coding for luminance.


Subject(s)
Haplorhini/physiology , Perception/physiology , Primary Visual Cortex/physiology , Wakefulness/physiology , Animals , Contrast Sensitivity , Male , Neurons/physiology , Photic Stimulation , Visual Cortex/physiology , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...