Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 325(5): C1228-C1243, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37721000

ABSTRACT

Extracellular adenosine triphosphate (ATP) is one of the most abundant biochemical constitutes within the stem cell microenvironment and is postulated to play critical roles in cell migration. However, it is unclear whether ATP regulates the cell migration of CD34+ vascular wall-resident stem/progenitor cells (VW-SCs) and participates in angiogenesis. Therefore, the biological mechanisms of cell migration mediated by ATP was determined by in vivo subcutaneous matrigel plug assay, ex vivo aortic ring assay, in vitro transwell migration assay, and other molecular methods. In the present study, ATP dose-dependently promoted CD34+ VW-SCs migration, which was more obviously attenuated by inhibiting or knocking down P2Y2 than P2Y6. Furthermore, it was confirmed that ATP potently promoted the migration of resident CD34+ cells from cultured aortic artery rings and differentiation into endothelial cells in matrigel plugs by using inducible lineage tracing Cd34-CreERT2; R26-tdTomato mice, whereas P2Y2 and P2Y6 blocker greatly inhibited the effect of ATP. In addition, ATP enhanced the protein expression of stromal interaction molecule 1 (STIM1) on cell membrane, blocking the calcium release-activated calcium (CRAC) channel with shSTIM1 or BTP2 apparently inhibited ATP-evoked intracellular Ca2+ elevation and channel opening, thereby suppressing ATP-driven cell migration. Moreover, extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 and p38 inhibitor SB203580 remarkably inhibited ERK and p38 phosphorylation, cytoskeleton rearrangement, and subsequent cell migration. Unexpectedly, it was found that knocking down STIM1 greatly inhibited ATP-triggered ERK/p38 activation. Taken together, it was suggested that P2Y2 signaled through the CRAC channel mediated Ca2+ influx and ERK/p38 pathway to reorganize the cytoskeleton and promoted the migration of CD34+ VW-SCs.NEW & NOTEWORTHY In this study, we observed that the purinergic receptor P2Y2 is critical in the regulation of vascular wall-resident CD34+ cells' migration. ATP could activate STIM1-mediated extracellular Ca2+ entry by triggering STIM1 translocation to the plasma membrane, and knockdown of STIM1 prevented ERK/p38 activation-mediated cytoskeleton rearrangement and cell migration.

2.
J Vis Exp ; (202)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38189517

ABSTRACT

Resident CD34+ vascular wall-resident stem and progenitor cells (VW-SCs) are increasingly recognized for their crucial role in regulating vascular injury and repair. Establishing a stable and efficient method to culture functional murine CD34+ VW-SCs is essential for further investigating the mechanisms involved in the proliferation, migration, and differentiation of these cells under various physiological and pathological conditions. The described method combines magnetic bead screening and flow cytometry to purify primary cultured resident CD34+ VW-SCs. The purified cells are then functionally identified through immunofluorescence staining and Ca2+ imaging. Briefly, vascular cells from the adventitia of the murine aorta and mesenteric artery are obtained through tissue block attachment, followed by subculturing until reaching a cell count of at least 1 × 107. Subsequently, CD34+ VW-SCs are purified using magnetic bead sorting and flow cytometry. Identification of CD34+ VW-SCs involves cellular immunofluorescence staining, while functional multipotency is determined by exposing cells to a specific culture medium for oriented differentiation. Moreover, functional internal Ca2+ release and external Ca2+ entry is assessed using a commercially available imaging workstation in Fura-2/AM-loaded cells exposed to ATP, caffeine, or thapsigargin (TG). This method offers a stable and efficient technique for isolating, culturing, and identifying vascular wall-resident CD34+ stem cells, providing an opportunity for in vitro studies on the regulatory mechanisms of VW-SCs and the screening of targeted drugs.


Subject(s)
Stem Cells , Vascular System Injuries , Animals , Mice , Adventitia , Aorta , Antigens, CD34 , Cell Adhesion Molecules
3.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232649

ABSTRACT

Mitochondrial dysfunction in the endothelium contributes to the progression of hypertension and plays an obligatory role in modulating vascular tone. Acacetin is a natural flavonoid compound that has been shown to possess multiple beneficial effects, including vasodilatation. However, whether acacetin could improve endothelial function in hypertension by protecting against mitochondria-dependent apoptosis remains to be determined. The mean arterial pressure (MAP) in Wistar Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) administered with acacetin intraperitoneally for 2 h or intragastrically for six weeks were examined. The endothelial injury was evaluated by immunofluorescent staining and a transmission electron microscope (TEM). Vascular tension measurement was performed to assess the protective effect of acacetin on mesenteric arteries. Endothelial injury in the pathogenesis of SHR was modeled in HUVECs treated with Angiotensin II (Ang II). Mitochondria-dependent apoptosis, the opening of Mitochondrial Permeability Transition Pore (mPTP) and mitochondrial dynamics proteins were determined by fluorescence activated cell sorting (FACS), immunofluorescence staining and western blot. Acacetin administered intraperitoneally greatly reduced MAP in SHR by mediating a more pronounced endothelium-dependent dilatation in mesenteric arteries, and the vascular dilatation was reduced remarkably by NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthesis. While acacetin administered intragastrically for six weeks had no apparent effect on MAP, it improved the endothelium-dependent dilatation in SHR by activating the AKT/eNOS pathway and protecting against the abnormalities of endothelium and mitochondria. Furthermore, acacetin remarkably inhibited Ang II induced apoptosis by inhibiting the increased expression of Cyclophilin D (CypD), promoted the opening of mPTP, ROS generation, ATP loss and disturbance of dynamin-related protein 1 (DRP1)/optic atrophy1 (OPA1) dynamics in HUVECs. This study suggests that acacetin protected against endothelial dysfunction in hypertension by activating the AKT/eNOS pathway and modulating mitochondrial function by targeting mPTP and DRP1/OPA1-dependent dynamics.


Subject(s)
Flavones , Hypertension , Hypotension , Animals , Rats , Adenosine Triphosphate/metabolism , Angiotensin II/metabolism , Angiotensin II/pharmacology , Blood Pressure , Peptidyl-Prolyl Isomerase F , Endothelium, Vascular/metabolism , Flavones/metabolism , Flavones/pharmacology , Hypertension/metabolism , Hypotension/metabolism , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Reactive Oxygen Species/metabolism , Vasodilation
4.
Life Sci ; 306: 120834, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35902031

ABSTRACT

Mitochondria play a pivotal role in cellular function, not only acting as the powerhouse of the cell, but also regulating ATP synthesis, reactive oxygen species (ROS) production, intracellular Ca2+ cycling, and apoptosis. During the past decade, extensive progress has been made in the technology to assess mitochondrial functions and accumulating evidences have shown that mitochondrial dysfunction is a key pathophysiological mechanism for many diseases including cardiovascular disorders, such as ischemic heart disease, cardiomyopathy, hypertension, atherosclerosis, and hemorrhagic shock. The advances in methodology have been accelerating our understanding of mitochondrial molecular structure and function, biogenesis and ROS and energy production, which facilitates new drug target identification and therapeutic strategy development for mitochondrial dysfunction-related disorders. This review will focus on the assessment of methodologies currently used for mitochondrial research and discuss their advantages, limitations and the implications of mitochondrial dysfunction in cardiovascular disorders.


Subject(s)
Cardiovascular Diseases , Mitochondrial Diseases , Apoptosis , Cardiovascular Diseases/metabolism , Humans , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
5.
Environ Toxicol Chem ; 28(8): 1627-32, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19374474

ABSTRACT

A gram-positive bacterium (designated as strain TeW) that is highly resistant to tellurite was isolated from sediment. The bacterium can grow in the presence of up to 2,000 micromol/L of potassium tellurite (K2TeO3). Reduction of K2TeO3 to tellurium was indicated by the blackening of the growth medium. No lag in growth was observed when cells unexposed to tellurite were transferred to the growth medium containing K2TeO3, indicating that resistance to tellurite was not inducible. Up to 50 and 90% of the metalloid oxyanion tellurite (TeO(3)(2-)) was removed from the medium by strain TeW during growth in nonstatic (shaking) and static (without shaking) conditions, respectively. The bacterium was identified as a Paenibacillus sp. according to its morphology, physiology, and 16S rDNA sequence homology.


Subject(s)
Geologic Sediments/chemistry , Geologic Sediments/microbiology , Gram-Positive Endospore-Forming Bacteria/drug effects , Gram-Positive Endospore-Forming Bacteria/physiology , Metals, Heavy/chemistry , Tellurium/toxicity , Gram-Positive Endospore-Forming Bacteria/genetics , Gram-Positive Endospore-Forming Bacteria/ultrastructure , Phylogeny
6.
Environ Toxicol Chem ; 26(4): 664-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17447550

ABSTRACT

Stenotrophomonas sp. CD02 was isolated from a site that previously had been contaminated with high concentrations of the heavy metals cadmium (3 mg kg(-1)) and chromium (115 mg kg(-1)). This strain was able to grow on complex (Luria Bertani) medium containing high concentrations of cadmium ion (up to 4 mM). Additionally, it could remove up to 80% of the dissolved ions but only after reaching stationary growth phase. Strain CD02 also tolerated high concentrations of other heavy metals such as chromium, zinc, copper, nickel, and lead at levels more than 2 mM. Although strain CD02 can tolerate much higher cadmium concentrations than the three Stenotrophomonas maltophilia strains tested, they all possess resistance to the same range of antibiotics. This suggests that strain CD02 possesses a mechanism that allows it to tolerate and remove cadmium differently from those conferring resistance to antibiotics. Strain CD02 can be a suitable candidate for heavy metal bioremediation in contaminated environment because it is able to tolerate high concentration of heavy metals and remove cadmium aerobically.


Subject(s)
Cadmium/metabolism , Drug Resistance, Bacterial/physiology , Soil Pollutants/metabolism , Stenotrophomonas/metabolism , Base Sequence , Biodegradation, Environmental , Cluster Analysis , Culture Media/chemistry , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Pollutants/analysis , Species Specificity , Stenotrophomonas/genetics , Stenotrophomonas/growth & development , Taiwan , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...