Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(4): 1114-1122, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35080395

ABSTRACT

Direct assembly of high-quality single-crystal perovskite microarrays on transparent conductive substrates and carrier injection layers is vital to realize high-performance optoelectronic devices. Although cubic-phase CsPbBr3 is considered to have a higher structural and optical quality than the orthorhombic one, obtaining a well-aligned assembly directly on the aforementioned substrates is still challenging. Here we developed a solvent-assisted crystallization strategy with the assistance of surface modifiers, through which the in situ low-temperature growth of well-aligned cubic single-crystal CsPbBr3 microarray with a preferential out-of-plane [100] orientation is achieved for the first time on commercial transparent conductive substrates. As compared with the control orthorhombic samples, the cubic CsPbBr3 single crystals possess superior properties including a higher photoluminescence internal quantum efficiency, fewer defect states, a weaker scattering by phonons, and an appearance of lasing. The results presented here can pave the way for future design and applications of optoelectronic devices based on perovskite microarrays.

2.
Nat Commun ; 11(1): 6428, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33353939

ABSTRACT

In the field of perovskite light-emitting diodes (PeLEDs), the performance of blue emissive electroluminescence devices lags behind the other counterparts due to the lack of fabrication methodology. Herein, we demonstrate the in situ fabrication of CsPbClBr2 nanocrystal films by using mixed ligands of 2-phenylethanamine bromide (PEABr) and 3,3-diphenylpropylamine bromide (DPPABr). PEABr dominates the formation of quasi-two-dimensional perovskites with small-n domains, while DPPABr induces the formation of large-n domains. Strong blue emission at 470 nm with a photoluminescence quantum yield up to 60% was obtained by mixing the two ligands due to the formation of a narrower quantum-well width distribution. Based on such films, efficient blue PeLEDs with a maximum external quantum efficiency of 8.8% were achieved at 473 nm. Furthermore, we illustrate that the use of dual-ligand with respective tendency of forming small-n and large-n domains is a versatile strategy to achieve narrow quantum-well width distribution for photoluminescence enhancement.

3.
Nanoscale ; 11(11): 4942-4947, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30834914

ABSTRACT

Perovskite quantum dots (PQDs) are emerging as functional luminescence down-shifting materials for light conversion applications. The incorporation of PQDs into a polymeric matrix is a key step to improving their stability, thus facilitating device integration. Compared to the conventional way of mixing the pre-synthesized PQDs into a polymer, the in situ fabrication of perovskite quantum dots-embedded composite films (PQDCFs) is an efficient and cost-effective method, which yields enhanced photoluminescence properties. This method has been successfully developed for green emissive CH3NH3PbBr3 PQDCFs, whereas the red CH3NH3PbI3 PQDCFs only show the photoluminescence quantum yields (PLQYs) less than 15%. By means of combining transmittance electron microscopy (TEM) and absorption spectrum analysis, we showed that the "perovskite red wall" in PQDCFs was mainly related to the phase separation, formation of large-sized particles and incomplete chemical conversion of precursors. These problems are caused by the solubility variance of perovskite precursors in the solvent as well as the solvation compatibility between perovskite precursors and the polymer during the crystallization process. Based on these findings, we introduced Cs+ as a dopant and 3,3-diphenylpropyamine (DPPA) as capping ligands, respectively, to decrease the solubility variance of the precursors and improve the compatibility between PQDs and the polymer. Consequently, highly luminescent red emissive PQDCFs with a PLQY of 91% were achieved with this strategy.

4.
ACS Nano ; 12(8): 8808-8816, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30080977

ABSTRACT

In this paper, we reported the in situ fabrication of highly luminescent formamidinium lead bromide (FAPbBr3) nanocrystal thin films by dropping toluene as an anti-solvent during the spin-coating with a perovskite precursor solution using 3,3-diphenylpropylamine bromide (DPPA-Br) as a ligand. The resulting films are uniform and composed of 5-20 nm FAPbBr3 perovskite nanocrystals. By monitoring the solvent mixing of anti-solvent and precursor solution on the substrates, we illustrated the difference between the ligand-assisted reprecipitation (LARP) process and the nanocrystal-pinning (NCP) process. This understanding provides a guideline for film optimization, and the optimized films obtained through the in situ LARP process exhibit strong photoluminescence emission at 528 nm, with quantum yields up to 78% and an average photoluminescence lifetime of 12.7 ns. In addition, an exciton binding energy of 57.5 meV was derived from the temperature-dependent photoluminescence measurement. More importantly, we achieved highly efficient pure green perovskite based light-emitting diode (PeLEDs) devices with an average external quantum efficiency (EQE) of 7.3% (maximum EQE is 16.3%) and an average current efficiency (CE) of 29.5 cd A-1 (maximum CE is 66.3 cd A-1) by adapting a conventional device structure of ITO/PEDOT:PSS/TFB/perovskite film/TPBi/LiF/Al. It is expected that the in situ LARP process provides an effective methodology for the improvement of the performance of PeLEDs.

5.
ACS Appl Mater Interfaces ; 9(8): 7362-7367, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28194942

ABSTRACT

The use of interfacial modifiers on cathode or anode layers can effectively reduce the recombination loss and thus have potential to enhance the device performance of polymer solar cells. In this work, we demonstrated that hydroxyl-terminated CuInS2-based quantum dots could be potential cathode interfacial modifiers on ZnO layer for inverted polymer solar cells. By casting of a thin film of CuInS2-based quantum dots onto ZnO layer, the controlled devices show obvious enhancements of open-circuit voltage, short-circuit current, and fill factor. With an optimized interfacial layer with ∼7 nm thickness, an improvement of power conversion efficiency up to 16% is obtained and the optimized power conversion efficiency of PTB7-based (PTB7: poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno[3,4-b] thiophenediyl]]) polymer solar cells approaches 8.51%. Detailed analysis shows that the performance enhancement can be explained to the improved light absorption, modified work function, reduced surface roughness, and the increased electron transfer of ZnO cathode interlayer.

SELECTION OF CITATIONS
SEARCH DETAIL
...