Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 81(1): 175, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597937

ABSTRACT

Phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a crucial role in abdominal aortic aneurysm (AAA) formation. CARMN, a highly conserved, VSMC-enriched long noncoding RNA (lncRNA), is integral in orchestrating various vascular pathologies by modulating the phenotypic dynamics of VSMCs. The influence of CARMN on AAA formation, particularly its mechanisms, remains enigmatic. Our research, employing single-cell and bulk RNA sequencing, has uncovered a significant suppression of CARMN in AAA specimens, which correlates strongly with the contractile function of VSMCs. This reduced expression of CARMN was consistent in both 7- and 14-day porcine pancreatic elastase (PPE)-induced mouse models of AAA and in human clinical cases. Functional analyses disclosed that the diminution of CARMN exacerbated PPE-precipitated AAA formation, whereas its augmentation conferred protection against such formation. Mechanistically, we found CARMN's capacity to bind with SRF, thereby amplifying its role in driving the transcription of VSMC marker genes. In addition, our findings indicate an enhancement in CAMRN transcription, facilitated by the binding of NRF2 to its promoter region. Our study indicated that CARMN plays a protective role in preventing AAA formation and restrains the phenotypic transformation of VSMC through its interaction with SRF. Additionally, we observed that the expression of CARMN is augmented by NRF2 binding to its promoter region. These findings suggest the potential of CARMN as a viable therapeutic target in the treatment of AAA.


Subject(s)
Aortic Aneurysm, Abdominal , RNA, Long Noncoding , Humans , Mice , Animals , Swine , RNA, Long Noncoding/genetics , Muscle, Smooth, Vascular , NF-E2-Related Factor 2/genetics , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Disease Models, Animal
2.
Acta Biochim Pol ; 70(3): 567-574, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721476

ABSTRACT

OBJECTIVE: A recent high-throughput sequencing showed that circular RNA Rho-associated kinase 1 (circROCK1) is abnormally highly expressed in sepsis, but whether it is involved in sepsis development remains unclear. The objective of this study was to investigate the biological function of circROCK1 in sepsis-induced myocardial injury and reveal its potential downstream molecular mechanism. METHODS: Real-time reverse transcriptase-polymerase chain reaction was applied to detect circROCK1 and miR-96-5p expressions in the serum of septic patients. Spearman correlation analysis examined the correlation between circROCK1 and the clinicopathological characteristics of septic patients. The Cecal puncture and ligation (CLP) method was used to establish an in vivo sepsis model. circROCK1 and miR-96-5p expressions in mice were modified by injection of lentivirus or oligonucleotide. The left ventricular systolic pressure, left ventricular end-diastolic pressure, and the maximum increase/decrease rate of left ventricular pressure were checked. ELISA was applied to detect inflammatory factors levels as well as myocardial injury markers levels. Hematoxylin and eosin staining was performed to observe pathological changes in myocardial tissues, and Western blot examined phosphorylated nuclear factor (NF)-κB and oxidative stress-responsive 1 (OXSR1) expression. Dual luciferase reporter experiment was conducted to confirm the targeting relationship between circROCK1, OXSR1, and miR-96-5p. RESULTS: circROCK1 and OXSR1 were highly expressed in sepsis and miR-96-5p was under-expressed. circROCK1 was positively correlated with serum creatinine, C-reactive protein, procalcitonin, and sequential organ failure assessment scores in septic patients. Silencing circROCK1 could improve the diastolic and systolic function of CLP mice, as well as myocardial damage, reduce myocardial tissue edema and necrosis, and inhibit inflammatory factor level and phosphorylated NF-κB expression. Down-regulating miR-96-5p promoted myocardial injury in CLP mice. Silencing circROCK1 and miR-96-5p inhibited and promoted OXSR1 expression, respectively. Both circROCK1 and OXSR1 had a targeting relationship with miR-96-5p. CONCLUSION: CircROCK1 promotes myocardial injury in septic mice by regulating the miR-96-5p/OXSR1 axis, and it can be used as a potential target for treating septic myocardial dysfunction.


Subject(s)
MicroRNAs , Myocardium , Animals , Mice , Blotting, Western , C-Reactive Protein , Cecum , MicroRNAs/genetics
3.
Biology (Basel) ; 12(4)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37106782

ABSTRACT

Both mitochondrial quality control and energy metabolism are critical in maintaining the physiological function of cardiomyocytes. When damaged mitochondria fail to be repaired, cardiomyocytes initiate a process referred to as mitophagy to clear defective mitochondria, and studies have shown that PTEN-induced putative kinase 1 (PINK1) plays an important role in this process. In addition, previous studies indicated that peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator that promotes mitochondrial energy metabolism, and mitofusin 2 (Mfn2) promotes mitochondrial fusion, which is beneficial for cardiomyocytes. Thus, an integration strategy involving mitochondrial biogenesis and mitophagy might contribute to improved cardiomyocyte function. We studied the function of PINK1 in mitophagy in isoproterenol (Iso)-induced cardiomyocyte injury and transverse aortic constriction (TAC)-induced myocardial hypertrophy. Adenovirus vectors were used to induce PINK1/Mfn2 protein overexpression. Cardiomyocytes treated with isoproterenol (Iso) expressed high levels of PINK1 and low levels of Mfn2, and the changes were time dependent. PINK1 overexpression promoted mitophagy, attenuated the Iso-induced reduction in MMP, and reduced ROS production and the apoptotic rate. Cardiac-specific overexpression of PINK1 improved cardiac function, attenuated pressure overload-induced cardiac hypertrophy and fibrosis, and facilitated myocardial mitophagy in TAC mice. Moreover, metformin treatment and PINK1/Mfn2 overexpression reduced mitochondrial dysfunction by inhibiting ROS generation leading to an increase in both ATP production and mitochondrial membrane potential in Iso-induced cardiomyocyte injury. Our findings indicate that a combination strategy may help ameliorate myocardial injury by improving mitochondrial quality.

4.
Front Cardiovasc Med ; 9: 944258, 2022.
Article in English | MEDLINE | ID: mdl-35845059

ABSTRACT

Objective: This study aimed to assess the association between triglyceride-glucose (TyG) index/homeostasis model assessment-insulin resistance (HOMA-IR) within young adults and congestive heart failure (CHF), and to explore whether TyG index can replace HOMA-IR as a surrogate marker for IR in predicting the risk of CHF. Methods: A total of 4,992 participants between the ages of 18 and 30 years were enrolled from the Coronary Artery Risk Development in Young Adults (CARDIA) investigation [from 1985 to 1986 (year 0)]. A Cox proportional hazard regression analysis was conducted for assessing correlations between baseline TyG index/HOMA-IR and CHF events, together with the receiver operating characteristic (ROC) curve employed for scrutinizing TyG index/HOMA-IR and the risk of CHF. Results: During the 31-year follow-up period, 64 (1.3%) of the 4,992 participants developed CHF. In multivariable Cox proportional hazards models, adjusted for confounding factors for CHF, an increased risk of CHF was associated with a per-unit increase in the TyG index [hazard ratio (HR) 2.8; 95% confidence interval (CI), 1.7-4.7] and HOMA-IR (HR 1.2; 95% CI, 1.1-1.3). A Kaplan-Meier curve analysis showed that participants in the TyG index and HOMA-IR index Q4 group had a higher risk of CHF than those in the Q1 group. The area under curve (AUC) for the TyG index and HOMA-IR consisted of 0.67 (95% CI, 0.6-0.742) and 0.675 (95% CI, 0.604-0.746), respectively. There were no significant differences between the TyG index and HOMA-IR for AUC (p = 0.986). Conclusion: The higher TyG index and HOMA-IR are independent risk factors for CHF. The TyG index can replace HOMA-IR in young adulthood as a surrogate marker for IR to predict the risk of CHF.

5.
Theranostics ; 11(16): 7995-8007, 2021.
Article in English | MEDLINE | ID: mdl-34335976

ABSTRACT

Rationale: The conserved long non-coding RNA (lncRNA) myocardial infarction associate transcript (Miat) was identified for its multiple single-nucleotide polymorphisms that are strongly associated with susceptibility to MI, but its role in cardiovascular biology remains elusive. Here we investigated whether Miat regulates cardiac response to pathological hypertrophic stimuli. Methods: Both an angiotensin II (Ang II) infusion model and a transverse aortic constriction (TAC) model were used in adult WT and Miat-null knockout (Miat-KO) mice to induce pathological cardiac hypertrophy. Heart structure and function were evaluated by echocardiography and histological assessments. Gene expression in the heart was evaluated by RNA sequencing (RNA-seq), quantitative real-time RT-PCR (qRT-PCR), and Western blotting. Primary WT and Miat-KO mouse cardiomyocytes were isolated and used in Ca2+ transient and contractility measurements. Results: Continuous Ang II infusion for 4 weeks induced concentric hypertrophy in WT mice, but to a lesser extent in Miat-KO mice. Surgical TAC for 6 weeks resulted in decreased systolic function and heart failure in WT mice but not in Miat-KO mice. In both models, Miat-KO mice displayed reduced heart-weight to tibia-length ratio, cardiomyocyte cross-sectional area, cardiomyocyte apoptosis, and cardiac interstitial fibrosis and a better-preserved capillary density, as compared to WT mice. In addition, Ang II treatment led to significantly reduced mRNA and protein expression of the Ca2+ cycling genes Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) and ryanodine receptor 2 (RyR2) and a dramatic increase in global RNA splicing events in the left ventricle (LV) of WT mice, and these changes were largely blunted in Miat-KO mice. Consistently, cardiomyocytes isolated from Miat-KO mice demonstrated more efficient Ca2+ cycling and greater contractility. Conclusions: Ablation of Miat attenuates pathological hypertrophy and heart failure, in part, by enhancing cardiomyocyte contractility.


Subject(s)
Heart Failure/genetics , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , Angiotensin II/pharmacology , Animals , Apoptosis , Cardiomegaly/genetics , Disease Models, Animal , Echocardiography , Fibrosis , Male , Mice , Mice, Knockout , Myocardial Infarction/pathology , RNA, Long Noncoding/metabolism
6.
Front Pharmacol ; 12: 649398, 2021.
Article in English | MEDLINE | ID: mdl-34335241

ABSTRACT

Long non-coding RNA (lncRNA) is widely reported to be involved in cardiac (patho)physiology. Acute myocardial infarction, in which cardiomyocyte apoptosis plays an important role, is a life-threatening disease. Here, we report the lncRNA Chaer that is anti-apoptotic in cardiomyocytes during Acute myocardial infarction. Importantly, lncRNA Chaer is significantly downregulated in both oxygen-glucose deprivation (oxygen-glucose deprivation)-treated cardiomyocytes in vitro and AMI heart. In vitro, overexpression of lncRNA Chaer with adeno virus reduces cardiomyocyte apoptosis induced by OGD-treated while silencing of lncRNA Chaer increases cardiomyocyte apoptosis instead. In vivo, forced expression of lncRNA Chaer with AAV9 attenuates cardiac apoptosis, reduces infarction area and improves mice heart function in AMI. Interestingly, overexpression of lncRNA Chaer promotes the phosphorylation of AMPK, and AMPK inhibitor Compound C reverses the overexpression of lncRNA Chaer effect of reducing cardiomyocyte apoptosis under OGD-treatment. In summary, we identify the novel ability of lncRNA Chaer in regulating cardiomyocyte apoptosis by promoting phosphorylation of AMPK in AMI.

7.
Front Cell Dev Biol ; 9: 682476, 2021.
Article in English | MEDLINE | ID: mdl-34277623

ABSTRACT

OBJECTIVE: Regenerative therapy using mesenchymal stem cells (MSC) is a promising therapeutic method for critical limb ischemia (CLI). To understand how the cells are involved in the regenerative process of limb ischemia locally, we proposed a metabolic protein labeling method to label cell proteomes in situ and then decipher the proteome dynamics of MSCs in ischemic hind limb. METHODS AND RESULTS: In this study, we overexpressed mutant methionyl-tRNA synthetase (MetRS), which could utilize azidonorleucine (ANL) instead of methionine (Met) during protein synthesis in MSCs. Fluorescent non-canonical amino-acid tagging (FUNCAT) was performed to detect the utilization of ANL in mutant MSCs. Mice with hindlimb ischemia (HLI) or Sham surgery were treated with MetRSmut MSCs or PBS, followed by i.p. administration of ANL at days 0, 2 6, and 13 after surgery. FUNCAT was also performed in hindlimb tissue sections to demonstrate the incorporation of ANL in transplanted cells in situ. At days 1, 3, 7, and 14 after the surgery, laser doppler imaging were performed to detect the blood reperfusion of ischemic limbs. Ischemic tissues were also collected at these four time points for histological analysis including HE staining and vessel staining, and processed for click reaction based protein enrichment followed by mass spectrometry and bioinformatics analysis. The MetRSmut MSCs showed strong green signal in cell culture and in HLI muscles as well, indicating efficient incorporation of ANL in nascent protein synthesis. By 14 days post-treatment, MSCs significantly increased blood reperfusion and vessel density, while reducing inflammation in HLI model compared to PBS. Proteins enriched by click reaction were distinctive in the HLI group vs. the Sham group. 34, 31, 49, and 26 proteins were significantly up-regulated whereas 28, 32, 62, and 27 proteins were significantly down-regulated in HLI vs. Sham at days 1, 3, 7, and 14, respectively. The differentially expressed proteins were more pronounced in the pathways of apoptosis and energy metabolism. CONCLUSION: In conclusion, mutant MetRS allows efficient and specific identification of dynamic cell proteomics in situ, which reflect the functions and adaptive changes of MSCs that may be leveraged to understand and improve stem cell therapy in critical limb ischemia.

8.
Front Cell Dev Biol ; 9: 657456, 2021.
Article in English | MEDLINE | ID: mdl-33898459

ABSTRACT

Exosomes transport biologically active cargo (e.g., proteins and microRNA) between cells, including many of the paracrine factors that mediate the beneficial effects associated with stem-cell therapy. Stem cell derived exosomes, in particular mesenchymal stem cells (MSCs), have been shown previously to largely replicate the therapeutic activity associated with the cells themselves, which suggests that exosomes may be a useful cell-free alternative for the treatment of cardiovascular disorders. However, the mechanisms that govern how exosomes home to damaged cells and tissues or the uptake and distribution of exosomal cargo are poorly characterized, because techniques for distinguishing between exosomal proteins and proteins in the targeted tissues are lacking. Here, we report the development of an in vivo model that enabled the visualization, tracking, and quantification of proteins from systemically administered MSC exosomes. The model uses bioorthogonal chemistry and cell-selective metabolic labeling to incorporate the non-canonical amino acid azidonorleucine (ANL) into the MSC proteome. ANL incorporation is facilitated via expression of a mutant (L274G) methionyl-tRNA-synthetase (MetRS∗) and subsequent incubation with ANL-supplemented media; after which ANL can be covalently linked to alkyne-conjugated reagents (e.g., dyes and resins) via click chemistry. Our results demonstrate that when the exosomes produced by ANL-treated, MetRS∗-expressing MSCs were systemically administered to mice, the ANL-labeled exosomal proteins could be accurately and reliably identified, isolated, and quantified from a variety of mouse organs, and that myocardial infarction (MI) both increased the abundance of exosomal proteins and redistributed a number of them from the membrane fraction of intact hearts to the cytosol of cells in infarcted hearts. Additionally, we found that Desmoglein-1c is enriched in MSC exosomes and taken up by ischemic myocardium. Collectively, our results indicate that this newly developed bioorthogonal system can provide crucial insights into exosome homing, as well as the uptake and biodistribution of exosomal proteins.

9.
Theranostics ; 10(24): 11324-11338, 2020.
Article in English | MEDLINE | ID: mdl-33042285

ABSTRACT

Rationale: Cell therapy for myocardial infarction is promising but largely unsuccessful in part due to a lack of mechanistic understanding. Techniques enabling identification of stem cell-specific proteomes in situ in the injured heart may shed light on how the administered cells respond to the injured microenvironment and exert reparative effects. Objective: To identify the proteomes of the transplanted mesenchymal stem cells (MSCs) in the infarcted myocardium, we sought to target a mutant methionyl-tRNA synthetase (MetRSL274G) in MSCs, which charges azidonorleucine (ANL), a methionine analogue and non-canonical amino acid, to tRNA and subsequently to nascent proteins, permitting isolation of ANL-labeled MSC proteomes from ischemic hearts by ANL-alkyne based click reaction. Methods and Results: Murine MSCs were transduced with lentivirus MetRSL274G and supplemented with ANL; the ANL-tagged nascent proteins were visualized by bio-orthogonal non-canonical amino-acid tagging, spanning all molecular weights and by fluorescent non-canonical amino-acid tagging, displaying strong fluorescent signal. Then, the MetRSL274G-transduced MSCs were administered to the infarcted or Sham heart in mice receiving ANL treatment. The MSC proteomes were isolated from the left ventricular protein lysates by click reaction at days 1, 3, and 7 after cell administration, identified by LC/MS. Among all identified proteins (in Sham and MI hearts, three time-points each), 648 were shared by all 6 groups, accounting for 82±5% of total proteins in each group, and enriched under mitochondrion, extracellular exosomes, oxidation-reduction process and poly(A) RNA binding. Notably, 26, 110 and 65 proteins were significantly up-regulated and 11, 28 and 19 proteins were down-regulated in the infarcted vs. Sham heart at the three time-points, respectively; these proteins are pronounced in the GO terms of extracellular matrix organization, response to stress and regulation of apoptotic process and in the KEGG pathways of complements and coagulation cascades, apoptosis, and regulators of actin cytoskeleton. Conclusions: MetRSL274G expression allows successful identification of MSC-specific nascent proteins in the infarcted hearts, which reflect the functional states, adaptive response, and reparative effects of MSCs that may be leveraged to improve cardiac repair.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Methionine-tRNA Ligase/analysis , Myocardial Infarction/therapy , Myocardium/pathology , Animals , Azides/chemistry , Cells, Cultured , Click Chemistry , Computational Biology , Disease Models, Animal , Humans , Methionine-tRNA Ligase/chemistry , Methionine-tRNA Ligase/genetics , Methionine-tRNA Ligase/metabolism , Mice , Myocardial Infarction/pathology , Norleucine/analogs & derivatives , Norleucine/chemistry , Proteomics/methods , Transduction, Genetic
10.
J Cardiovasc Pharmacol ; 75(5): 446-454, 2020 05.
Article in English | MEDLINE | ID: mdl-32141990

ABSTRACT

Atherosclerosis (AS), known as the chronic inflammatory disease, results from the dysfunction of vascular endothelial cells (VECs). Transforming growth factor-ß1 (TGF-ß1) has been reported to be induced by oxidized low-density lipoprotein (ox-LDL) and contribute to AS-related vascular endothelial cell damage. This work planned to study the mechanism of TGF-ß1 in vascular endothelial cell damage. We found that TGF-ß1 was activated by ox-LDL in human umbilical vascular endothelial cells (HUVECs). Silence of TGF-ß1 reversed the inductive effect of ox-LDL on apoptosis and inflammatory response of HUVECs. Mechanistically, microRNA-4286 (miR-4286) targeted and inhibited TGF-ß1 to inhibit Smad3, and Smad3 bound to the promoter of miR-4286 to repress its transcription. Rescue assays indicated that miR-4286 ameliorated the ox-LDL-induced apoptosis and inflammatory response through inhibiting TGF-ß1. In conclusion, our study first demonstrated that miR-4286/TGF-ß1/Smad3-negative feedback loop ameliorated vascular endothelial cell damage by attenuating apoptosis and inflammatory response, providing new thoughts for promoting the treatment of AS.


Subject(s)
Apoptosis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation Mediators/metabolism , Lipoproteins, LDL/toxicity , MicroRNAs/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Cells, Cultured , Feedback, Physiological , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , MicroRNAs/genetics , Signal Transduction , Smad3 Protein/genetics , Transforming Growth Factor beta1/genetics
11.
Front Pharmacol ; 11: 585680, 2020.
Article in English | MEDLINE | ID: mdl-33390954

ABSTRACT

Rationale: Cardiac fibrosis is observed in nearly every form of myocardial disease. Long non-coding RNAs (lncRNAs) have been shown to play an important role in cardiac fibrosis, but the detailed molecular mechanism remains unknown. Object: We aimed at characterizing lncRNA 554 expression in murine cardiac fibroblasts (CFs) after myocardial infarction (MI) to identify CF-enriched lncRNA and investigate its function and contribution to cardiac fibrosis and function. Methods and Results: In this study, we identified lncRNA NONMMUT022554 (lncRNA 554) as a regulator of MI-induced cardiac fibrosis. We found that lncRNA 554 was significantly up-regulated in the mouse hearts following MI. Further study showed that lncRNA 554 was predominantly expressed in cardiac fibroblasts, indicating a potential role of lncRNA 554 in cardiac fibrosis. In vitro knockdown of lncRNA 554 by siRNA suppressed fibroblasts migration and expression of extracellular matrix (ECM); while overexpression of lncRNA 554 promoted expression of ECM genes. Consistently, lentivirus mediated in vivo knockdown of lncRNA 554 could inhibit cardiac fibrosis and improve cardiac function in mouse model of MI. More importantly, TGF-ß1 inhibitor (TEW-7197) could reverse the pro-fibrotic function of lncRNA 554 in CFs. This suggests that the effects of lncRNA 554 on cardiac fibrosis is TGF-ß1 dependent. Conclusion: Collectively, our study illustrated the role of lncRNA 554 in cardiac fibrosis, suggested that lncRNA 554 might be a novel target for cardiac fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...