Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38138785

ABSTRACT

Nuclear power components contain radioactivity on their surfaces after long-term service, which can be harmful to personnel and the environment during maintenance, dismantling, and decommissioning. In this experiment, laser decontamination technology is utilized to remove radioactivity from their surfaces. In order to meet the actual needs, a laser decontamination process without spot overlapping has been studied. Under the same equipment conditions, the decontamination efficiency of the non-spot overlapping process is 10 times higher than that of the spot overlapping process. Alloy 690 is used as the test substrate, and non-radioactive specimens are prepared by simulating primary-circuit hydrochemical conditions. The surface morphology, elemental composition, and phase composition of the specimens before and after laser decontamination are investigated with SEM and XRD using the single-pulse experiment and power single-factor experiment methods, and the laser decontamination effect was evaluated. The results show that the decontamination efficiency reached 10.8 m2/h under the conditions of a pulse width of 500 ns, a laser repetition frequency of 40 kHz, a scanning speed of 15,000 mm/s, and a line spacing of 0.2 mm, according to which the removal effect was achieved when the laser power was 160 W and the oxygen content on the surface was 6.29%; additionally, there were no oxide phases in the XRD spectra after decontamination. Therefore, the laser cleaning process without spot overlap can provide reference for future practical operations to achieve efficient removal of radioactivity from nuclear power components.

2.
Materials (Basel) ; 16(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770170

ABSTRACT

In this study, the uniaxial compression of random orientation ZK60 Mg alloy to different strains was performed at room temperature. The microstructure evolution was characterized mainly using electron backscattered diffraction (EBSD), and the mechanical property was evaluated by the Vickers hardness test. During compression, extension twins nucleated, grew, and engulfed the grain. Twins form a texture with the c-axis parallel to the compression direction. With the massive nucleation and expansion of extension twins during compression, the twin boundary (TB) brought the grain refinement, and the twin boundary-dislocation interaction significantly increased the strain hardening rate of ZK60 Mg alloy, both leading to its significantly increasement of the hardness.

3.
Biofouling ; 38(8): 824-836, 2022 09.
Article in English | MEDLINE | ID: mdl-36314065

ABSTRACT

The motion paths of Balanus reticulatus cyprids were similar on all the titanium alloys surfaces. On the parallel grinding surfaces, the temporary attachment duration and the settlement ratio of the cyprids were influenced by the roughness and the composition of the surfaces and correlated positively. The surface roughness could also change the contact area and the numbers of the attachment points of the cyprids in the similar pattern. Consequently, the roughness and the composition of the surfaces regulated the cyprid settlement by the temporary attachment duration. The cross grinding increased the temporary attachment duration but drastically decreased the settlement ratio to 0 compared to the parallel grinding, possibly due to the voids and the drastic decrease of the contact area and the numbers of the attachment points of the cyprids on the cross grinding surface, respectively. The cross grinding therefore significantly reduced the cyprid settlement compared to the parallel grinding.


Subject(s)
Thoracica , Animals , Titanium , Alloys , Larva , Behavior, Animal , Biofilms
4.
Materials (Basel) ; 15(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35955369

ABSTRACT

Crevice corrosion behavior of Alloy 690 in high-temperature aerated chloride solution was studied using a self-designed crevice device. The SEM, EDS, XRD, and XPS analyses results indicated that the oxide films outside the crevice consisted of Ni-Cr oxides containing a small amount of hydroxides, and the oxide films on crevice mouth consisted of a (Ni,Fe)(Fe,Cr)2O4 spinel oxides outer layer and a Cr(OH)3 inner layer, and the oxide films inside the crevice consisted of a α-CrOOH outer layer and a Cr(OH)3 inner layer. When crevice corrosion occurred, the hydrolysis of Cr3+ led to the formation of Cr(OH)3 inside the crevice, and caused the pH value of crevice solution to decrease, and Cl- migrated from outside the crevice into inside the crevice due to electrical neutrality principle and accumulation. When the water chemistry inside the crevice reached the critical value of active dissolution of metal, the active dissolution of metal inside the crevice occurred. In addition, (Ni,Fe)(Fe,Cr)2O4 spinel oxides on the crevice mouth were formed by the deposition of metal ions migrated from inside the crevice. The mechanism of crevice corrosion and the formation mechanism of oxide films at different regions were also discussed.

6.
Sci Rep ; 11(1): 1371, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446760

ABSTRACT

Grain boundary (GB) oxidation of proton-irradiated 304 nuclear grade stainless steel in primary water of pressurized water reactor was investigated. The investigation was conducted by studying microstructure of the oxide and oxide precursor formed at GB on an "atom-by-atom" basis by a combination of atom-probe tomography and transmission electron microscope. The results revealed that increasing irradiation dose promoted the GB oxidation, in correspondence with a different oxide and oxide precursor formed at the GB. Correlation of the oxide and oxide precursor with the GB oxidation behavior has been discussed in detail.

7.
Mater Sci Eng C Mater Biol Appl ; 105: 110042, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31546440

ABSTRACT

Influences of proteins on degradation of magnesium alloys are of great significance but not well understood. In particular the roles of amino acids, the basic unit of proteins in regulating the progress of biodegradation of magnesium based materials remain unclear. This study aims to investigate the impacts of alanine, glutamic acid and lysine on degradation of pure magnesium in phosphate buffer solution through SEM, XPS, FTIR, potentiodynamic polarisation curves, electrochemical impedance spectroscopy and immersion tests. The changed contents of amino acids in solutions were detected by UV-vis spectrophotometer. Results demonstrate that the charges of the selected amino acids imposed significant contribution to suppressing the degradation of pure magnesium in phosphate buffer solution. The presence of amino acids led to the formation of phosphate-based corrosion products, increasing free corrosion potential, and reduction in corrosion current density and solution pH depending on their isoelectric points and molecular structures. A plausible corrosion mechanism organised by amino acids on pure magnesium was proposed.


Subject(s)
Amino Acids/chemistry , Magnesium/chemistry , Phosphates/chemistry , Buffers , Corrosion , Dielectric Spectroscopy , Electrochemistry , Humans , Hydrogen/analysis , Isoelectric Point , Molecular Conformation , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
8.
Materials (Basel) ; 11(6)2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29865164

ABSTRACT

A nano-ZrO2 modified coating system was prepared by incorporation of nano-ZrO2 concentrates into phenolic-epoxy resin. The corrosion performance of the coatings was evaluated in hot mixed acid solution, using electrochemical methods combined with surface characterization, and the effects of nano-ZrO2 content were specially focused on. The results showed that 1% and 3% nano-ZrO2 addition enhanced the corrosion resistance of the coatings, while 5% nano-ZrO2 addition declined it. The coating with 3% nano-ZrO2 presented the minimum amount of species diffusion, the lowest average roughness (5.94 nm), and the highest C/O ratio (4.55) and coating resistance, and it demonstrated the best corrosion performance among the coating specimens.

9.
Bioact Mater ; 3(3): 245-249, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29744463

ABSTRACT

A SnO2-doped dicalcium phosphate coating was prepared on AZ31 alloy by means of hydrothermal deposition. The results showed that the coating possessed a globular morphology with a long lamellar crystalline structure and a thickness of approximately 40 µm. The surface of the coating became smooth with an increase additive amount of the SnO2 nanoparticles. The corrosion current density and hydrogen evolution rate of the coating prepared in presence of SnO2 were reduced compared to the coating without SnO2 and the bare AZ31 substrate, indicating an improvement in the corrosion resistance of the SnO2-doped coating.

10.
Nanomaterials (Basel) ; 7(9)2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28841153

ABSTRACT

In this manuscript, we have developed an efficient spraying method to successfully fabricate a series of flower-like coordination polymers (CP) microparticles, including Co/BDC (1,4-benzenedicarboxylate) metal organic frameworks (MOF) and infinite coordination polymers (ICP) microparticles, as well as Ni-Co/BDC MOF and Zn/DOBDC (2,5-dioxido-1,4-benzenedicarboxylate) MOF. The spraying method has shown high efficiency and universality in synthesizing the flower-like CP. The crystalline structure can be adjusted by varying the solvent composition in the spraying process. SEM observation demonstrated the MOF and ICP microparticles possess the similar flower-like structure, which is composed of nanoflakes with smooth surface, and the flower-like microparticles could be monodisperse with as low as 5% polydispersity. Moreover, the fabrication of the flower-like CP microparticles by spraying has a wide operation window, because there is no need to precisely control the experiment conditions, like solvents, concentration, and spray order. Due to the practicality of spray technique, this work would pave the way for the manufacture of the flower-like materials and have great potential in applications of catalysis, sensor, energy storage, and so on.

11.
Materials (Basel) ; 10(7)2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28773085

ABSTRACT

The influences of glucose and amino acid (L-cysteine) on the degradation of pure magnesium have been investigated using SEM, XRD, Fourier transformed infrared (FTIR), X-ray photoelectron spectroscopy (XPS), polarization and electrochemical impedance spectroscopy and immersion tests. The results demonstrate that both amino acid and glucose inhibit the corrosion of pure magnesium in saline solution, whereas the presence of both amino acid and glucose accelerates the corrosion rate of pure magnesium. This may be due to the formation of -C=N- bonding (a functional group of Schiff bases) between amino acid and glucose, which restricts the formation of the protective Mg(OH)2 precipitates.

12.
Langmuir ; 33(19): 4702-4708, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28441869

ABSTRACT

In this paper, a highly transparent, conductive, and bendable Ag nanowire (AgNW)-based electrode with excellent mechanical stability was prepared through the introduction of an adhesive polyelectrolyte multilayer between AgNW networks and a polyethylene terephthalate (PET) substrate. The introduction of the adhesive layer was performed based on a peel-assembly-transfer procedure, and the adhesive polyelectrolyte greatly improved the mechanical stability of the AgNW transparent conductive films (TCFs) without obviously attenuating the morphology and optoelectrical properties of the AgNW networks. The as-prepared AgNW TCFs simultaneously possess high optical transparency, good conductivity, excellent flexibility, and remarkable mechanical stability. It is believed that the proposed strategy would pave a new way for preparing flexible transparent electrodes with a long-term stability, which is significant in the development and practical applications of flexible transparent electronic devices operated in severe environments.

13.
Sci Rep ; 5: 13026, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26264413

ABSTRACT

Magnesium and its alloys are promising biodegradable biomaterials but are still challenging to be used in person with high levels of blood glucose or diabetes. To date, the influence of glucose on magnesium degradation has not yet been elucidated, this issue requires more attention. Herein, we present pure Mg exhibiting different corrosion responses to saline and Hank's solutions with different glucose contents, and the degradation mechanism of pure Mg in the saline solution with glucose in comparison with mannitol as a control. On one hand, the corrosion rate of pure Mg increases with the glucose concentration in saline solutions. Glucose rapidly transforms into gluconic acid, which attacks the oxides of the metal and decreases the pH of the solution; it also promotes the absorption of chloride ions on the Mg surface and consequently accelerates corrosion. On the other hand, better corrosion resistance is obtained with increasing glucose content in Hank's solution due to the fact that glucose coordinates Ca(2+) ions in Hank's solution and thus improves the formation of Ca-P compounds on the pure Mg surface. This finding will open up new avenues for research on the biodegradation of bio-Mg materials in general, which could yield many new and interesting results.


Subject(s)
Glucose/chemistry , Magnesium/chemistry , Corrosion , Hydrogen-Ion Concentration , In Vitro Techniques , Microscopy, Electron, Scanning , Osmolar Concentration , X-Ray Diffraction
14.
Langmuir ; 30(2): 548-53, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24364766

ABSTRACT

We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.


Subject(s)
Lactic Acid/chemistry , Polymers/chemistry , Silver/chemistry , Particle Size , Polyesters , Surface Properties
15.
Nanotechnology ; 24(10): 105302, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23416634

ABSTRACT

The assembly of Ag nanowires on quartz substrates from suspensions of water and ethylene glycol under stirring has been investigated. The introduction of stirring makes a remarkable difference to the assembly morphology. Firstly, the surface coverage of Ag nanowires is increased by a factor of 4 (in water) and 8 (in ethylene glycol) with stirring. Secondly, the Ag nanowires assembled in the stirred ethylene glycol dispersion were highly aligned. The influence of the surface of substrates, solvents and profile of the nanowires on the alignment has been explored, which indicates that stirring is an efficient way to generate nanowire arrays. This study has revealed the great potential of the stirring-assisted assembly technique in producing structurally controlled nanoarchitectures, opening up new opportunities for manufacturing ordered nanomaterials.

16.
Mater Sci Eng C Mater Biol Appl ; 33(1): 78-84, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-25428046

ABSTRACT

A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L(-1) nicotinic acid (NA) solution, named as vitamin B3, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings.


Subject(s)
Alloys/chemistry , Calcium Phosphates/chemistry , Coated Materials, Biocompatible/chemistry , Niacin/chemistry , Body Fluids/chemistry , Corrosion , Electric Impedance , Electricity , Magnesium/chemistry , Surface Properties , X-Ray Diffraction , Zinc/chemistry
17.
Sensors (Basel) ; 9(12): 10400-10, 2009.
Article in English | MEDLINE | ID: mdl-22303180

ABSTRACT

A new experimental method was applied in in situ corrosion monitoring of mild steel Q235 under alternate wet-dry conditions. The thickness of the electrolyte film during the wet cycle was monitored by a high-precision balance with a sensibility of 0.1 mg. At the same time, an electrochemical impedance technique was employed to study the effect of film thickness on corrosion rates. Experimental results showed that there was a critical electrolyte film condition for which the corrosion rate reached a maximum during wet-dry cycles. For the substrate, the critical condition could be described by a film thickness of about 17 µm. For the rusted specimen, the critical condition could be described by an electrolyte amount of about 0.038 g, which is equivalent to a film thickness of 38 µm. This monitoring system was very useful for studying atmospheric corrosion of metals covered by corrosion products.

18.
Acta Biomater ; 3(5): 807-15, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17467350

ABSTRACT

The influence of fluoride and chloride ions on the corrosion behavior of nearly equiatomic nickel-titanium orthodontic wires was studied using conventional electrochemical measurement methods, including corrosion potential, potentiodynamic and cyclic potentiodynamic polarization measurements. In addition, scanning electron microscopy was employed to observe the surface morphology before and after the test. All the electrochemical parameters are analyzed based on the sample standard deviations. The results indicated that NiTi alloy is primarily susceptible to localized corrosion when exposed to a solution containing chloride, while it is susceptible to general corrosion when subjected to a solution containing fluoride. Furthermore, the synergistic interaction of fluoride and chloride on corrosion of NiTi alloy is associated with their respective molar concentrations.


Subject(s)
Chlorides/chemistry , Fluorides/chemistry , Orthodontic Wires , Corrosion , Equipment Failure Analysis , Materials Testing , Surface Properties
19.
Dent Mater ; 23(2): 133-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16466784

ABSTRACT

OBJECTIVES: This paper aimed to study the mechanism of the cracking of orthodontic NiTi wire. METHODS: Two orthodontic NiTi wires were subjected: (1) optical and scanning electron microscopy (SEM) to observe the fracture surface; (2) energy dispersive X-ray spectroscopy to determine the composition of the surface product; (3) anodic polarization to remove the surface product. Samples of NiTi alloy were subjected to the constant loading test to study the stress corrosion cracking (SCC) behavior of NiTi shape memory alloy in artificial saliva. RESULTS: The results showed that there were three typical areas at the fracture surface of NiTi orthodontic wire. Area '1' was a tool-made notch. Crack initiated from the root of this notch and propagated to form Area '2', which was perpendicular to the wire axis and covered by surface film. This film consisted of Na, K, Cl, P, S and O except Ni and Ti. The cracking process of NiTi alloy under the constant loading test depended on the pH of saliva and applied stress. The crack length was about 262microm, the longest at 300MPa and pH 3.0. SIGNIFICANCE: A tool-made notch in orthodontic NiTi wires can cause SCC. At high stress and low pH, this NiTi alloy was most sensitive to cracking.


Subject(s)
Dental Alloys/chemistry , Nickel/chemistry , Orthodontic Wires , Saliva, Artificial/chemistry , Titanium/chemistry , Chlorine/chemistry , Corrosion , Electron Probe Microanalysis , Equipment Failure , Humans , Hydrogen-Ion Concentration , Materials Testing , Microscopy, Electron, Scanning , Oxygen/chemistry , Phosphorus/chemistry , Potassium/chemistry , Sodium/chemistry , Stress, Mechanical , Sulfur/chemistry , Surface Properties
20.
J Mater Sci Mater Med ; 17(10): 885-90, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16977385

ABSTRACT

The cooperation of pH, temperature and Cl- concentration on electrochemical behavior of NiTi shape memory alloy in artificial saliva was studied using orthogonal test method. The results showed that the pitting potential for NiTi in artificial saliva decreased at low and high pH; at 25 degrees C, the pitting potential was the lowest compared to those at 10 degrees C, 37 degrees C and 50 degrees C; when the Cl- concentration was not less than 0.05 mol/L the pitting potential decreased with the increase of Cl- concentration. The free corrosion potential of austenitic NiTi was lower than that of mixture of austenite and martensite.


Subject(s)
Chlorides , Electrochemistry , Nickel/chemistry , Saliva, Artificial , Titanium/chemistry , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...