Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Heliyon ; 9(11): e21255, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954285

ABSTRACT

During the pyrolysis process of large particles, the conduction between particles cannot be ignored. In the present work, a numerical simulation model for the pyrolysis of biomass particles was established, which takes into account the conduction within the particles. Based on this model, the temperature distribution inside the particle during the pyrolysis process was determined and the effects of particle size, moisture content, and gas velocity on heat transfer characteristics were analyzed. The results showed that the temperatures at different positions of the particles along the inflow direction were quite different, and the maximum temperature difference inside the particles was about 146.7 K for a particle diameter of 10 mm and a velocity of 0.2 m/s. During the pyrolysis process of biomass particles, there were two peaks of Nusselt number. The increase of moisture content prolonged the pyrolysis time. The pyrolysis. time of particles with moisture content of 15 % was about 1.5 times longer than that of dry particles when the particle diameter was 10 mm. Increasing the particle size decreased the difference between the two peaks and increased the time interval between the two peaks. Increasing the gas velocity can improve the heat transfer, but the effect of too high gas velocity on improving the heat transfer is limited. The present study is of great importance for a detailed understanding of the pyrolysis process of biomass particles.

2.
Lab Chip ; 22(23): 4621-4631, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36326042

ABSTRACT

The excellent motion performance of gallium-based liquid metals (LMs) upon the application of a modest electric field has provided a new opportunity for the development of autonomous soft robots. However, the locomotion of LMs often appears in an alkaline solution, which hampers the application under other different conditions. In this work, a novel robot arm is designed to transfer the motion of the LM from an alkaline solution in a synchronous drive mode. The liquid metal droplet (LMD) at the bottom of the robot arm is actuated using a DC voltage to provide the driving force for the system. By introducing an end effector at the center of the robot arm, the synchronous motion of the system is replicated and can be applied to different situations. The theoretical understanding of continuous electrowetting (CEW) at the LM interface is explained, and then the motion performance of the robot arm against the function of the applied voltage and driving direction is investigated. Moreover, several applications using this robot arm, such as pattern drawing, cargo transportation, and drug concentration detection, are demonstrated. The presented robot arm has the potential to observably expand the application fields of the LM.


Subject(s)
Robotics , Motion , Electrowetting , Locomotion , Metals
3.
Micromachines (Basel) ; 13(9)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36144052

ABSTRACT

Rigid sensors are a mature type of sensor, but their poor deformation and flexibility limit their application range. The appearance and development of flexible sensors provide an opportunity to solve this problem. In this paper, a resistive flexible sensor utilizes gallium-based liquid metal (eutectic gallium indium alloy, EGaIn) and poly(dimethylsiloxane) (PDMS) and is fabricated using an injecting thin-line patterning technique based on soft lithography. Combining the scalable fabrication process and unique wire-shaped liquid metal design enables sensitive multifunctional measurement under stretching and bending loads. Furthermore, the flexible sensor is combined with the glove to demonstrate the application of the wearable sensor glove in the detection of finger joint angle and gesture control, which offers the ability of integration and multifunctional sensing of all-soft wearable physical microsystems for human-machine interfaces. It shows its application potential in medical rehabilitation, intelligent control, and so on.

4.
Ying Yong Sheng Tai Xue Bao ; 21(1): 16-22, 2010 Jan.
Article in Chinese | MEDLINE | ID: mdl-20387417

ABSTRACT

An investigation was made on the biomass- and energy allocation in 1-4-year-old Eucalyptus urophylla x Eucalyptus tereticornis plantations at Beipo Forest Farm of Suixi County in Guangdong Province. Stand age had significant effects on the retained biomass of the plantations (P < 0.01). The biomass was in the range of 10.61-147.28 t x hm(-2). Both the total biomass and the biomass of above- and belowground components increased with increasing stand age. The proportions of leaf-, branch- and bark biomass to total biomass decreased with year, while that of stem biomass was in reverse. The biomass allocation of the components in 1- and 2-year-old plantations decreased in order of stem > branch > bark > root > leaf, and that in 3- and 4 -year-old plantations was in order of stem > root > branch > bark > leaf. The mean ash content (AC) of the five components at different stand ages ranged from 0.47% to 5.91%, being the highest in bark and the lowest in stem. The mean gross caloric value (GCV) and ash free caloric value (AFCV) of different components ranged from 17.33 to 20. 60 kJ x g(-1) and from 18.42 to 21.59 kJ x g(-1) respectively. Of all the components, leaf had the highest GVC and AFCV, while bark had the lowest ones. Stand age had significant effects on the GVC of branch, stem, and bark, and on the AFCV of leaf, stem, and bark (P < 0.05), but the effects on the GVC of leaf and root, the AFCV of branch and root, and the GVC and AFCV of individual trees were not significant (P > 0.05). The retained energy of 1-4-year-old plantations ranged from 199.98 to 2837.20 GJ x hm(-2), with significant differences among the stand ages (P < 0.01). The retained energy of various components and plantations increased with stand age, and the energy allocation of various components had the same trend as biomass allocation.


Subject(s)
Biomass , Energy Metabolism , Eucalyptus/growth & development , China , Eucalyptus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...