Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(17): 20966-20976, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37079627

ABSTRACT

LiNi0.8Mn0.1Co0.1O2||SiOx@graphite (NCM811||SiOx@G)-based lithium-ion batteries (LIBs) exhibit high energy density and have found wide applications in various fields, including electric vehicles. Nonetheless, its low-temperature performance remains a challenge. One of the most efficacious strategies to enhance the low-temperature functionality of battery is the development of appropriate electrolytes with low-temperature suitability. Herein, p-tolyl isocyanate (PTI) and 4-fluorophenyl isocyanate (4-FI) are used as additive substances to integrate into the electrolytes to improve the low-temperature performance of the battery. Theoretical calculations and experimental results indicate that PTI and 4-FI can both preferentially generate a stable SEI on the electrode surface, which is beneficial to reduce the interfacial impedance. As a result, the additive, i.e. 4-FI, is superior to PTI in improving the low-temperature performance of the battery due to the optimization of F in the SEI membrane components. At room temperature, the cyclic stability of the NCM811/SiOx@G pouch cell increases from 92.5% (without additive) to 94.2% (with 1% 4-FI) after 200 cycles at 0.5 C. Under the operating temperature of -20 °C, the cyclic stability of the NCM811/SiOx@G pouch cell increases from 83.2% (without additive) to 88.6% (with 1% 4-FI) after 100 cycles at 0.33 C. Therefore, a rational interphase design involving the modification of the additive structure is a cost-effective way to improve the performance of LIBs.

2.
Sci Total Environ ; 636: 1058-1069, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29913568

ABSTRACT

PFASs are widely distributed in natural and living environment and can enter human bodies via different routes. Many studies have reported that PFASs may be associated with human diseases, such as urine acid and thyroid diseases. In this study, we reviewed PFAS levels in human bodies reported in past seven years, including blood, urine, milk, and tissues (hair and nails). Most studies focused on human blood. Blood type, spatiality, human age, and gender were found to have a strong relationship with PFAS levels in blood samples. The PFAS distribution in urine samples was reported to be associated with the chain length of PFASs and human gender. Urinary excretion was found to be an important pathway of PFAS elimination. PFAS levels in human milk might be affected by various factors, such as mothers' age, dietary habit, parity of mothers and the interval of interpregnancy. Data in hair and nails remain very limited, but these matrices offer a non-invasive approach to evaluate human exposure to PFASs.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollutants/metabolism , Fluorocarbons/metabolism , Humans , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...