Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Article in English | MEDLINE | ID: mdl-38789637

ABSTRACT

Gallbladder cancer (GBC) is a common malignant cancer in the biliary system, which poses a serious threat to human health. It is urgent to explore ideal drugs for the treatment of GBC. Matrine is the main active ingredient of Sophora flavescentis, with a wide range of biological activities encompassing anti-inflammatory, antiviral, immunomodulatory, and anti-tumor. However, the underlying mechanism by which Matrine treats GBC is still unclear. The purpose of this study is to investigate the anti-tumor effects of Matrine on GBC in vivo and in vitro and to clarify the potential regulatory mechanisms. Here, we found that Matrine had a significant killing effect on GBC through CCK8 and flow cytometry, including arrest of cell cycle, inhibition of GBC cell, and induction of apoptosis. Further in vivo studies confirmed the inhibitory effect of Matrine on tumor growth in NOZ xenografted nude mouse. At the same time, Matrine also significantly suppressed the migration and invasion of GBC cells through scratch and Transwell experiments. In addition, by detecting the mRNA and protein levels of epithelial-mesenchymal transition (EMT) and matrix metalloproteinases, Matrine furtherly substantiated the inhibitory role on invasion and migration of GBC. From a mechanistic perspective, network pharmacology analysis suggests that the potential targets of Matrine in the treatment of GBC are enriched in the PI3K/AKT signaling pathway. Subsequently, Matrine effectively decreased the abundance of p-PI3K and p-AKT protein in vivo and in vitro. More importantly, PI3K activator (740 Y-P) antagonized the anti-tumor effect of Matrine, while PI3K inhibitor (LY294002) increased the sensitivity of Matrine for GBC. Based on the above findings, we conclude that Matrine inhibits the invasion and migration of GBC by regulating PI3K/AKT signaling pathway. Our results indicate the crucial role and regulatory mechanism of Matrine in suppressing the growth of GBC, which provides a theoretical basis for Matrine to be a candidate drug for the treatment and research of GBC.

2.
Phytomedicine ; 129: 155661, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677269

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) poses a significant risk to human health. Its development is influenced by numerous factors, particularly the homeostasis of reactive oxygen species (ROS) within cells. This homeostasis is crucial for tumor cell survival, and abnormal regulation of ROS is associated with the occurrence and progression of many cancers. Dihydrotanshinone I (DHT I), a biologically effective ingredient isolated from Salvia miltiorrhiza, has exhibited cytotoxic properties against various tumor cells by inducing apoptosis. However, the precise molecular mechanisms by which dht I exerts its cytotoxic effects remain unclear. PURPOSE: To explore the anti-tumor impact of dht I on GBC and elucidate the potential molecular mechanisms. METHODS: The proliferation of GBC cells, NOZ and SGC-996, was assessed using various assays, including CCK-8 assay, colony formation assay and EdU staining. We also examined cell apoptosis, cell cycle progression, ROS levels, and alterations in mitochondrial membrane potential to delve into the intricate molecular mechanism. Quantitative PCR (qPCR), immunofluorescence staining, and Western blotting were performed to evaluate target gene expression at both the mRNA and protein levels. The correlation between nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1) were examined using co-immunoprecipitation. Finally, the in vivo effect of dht I was investigated using a xenograft model of gallbladder cancer in mice. RESULTS: Our research findings indicated that dht I exerted cytotoxic effects on GBC cells, including inhibiting proliferation, disrupting mitochondrial membrane potential, inducing oxidative stress and apoptosis. Our in vivo studies substantiated the inhibition of dht I on tumor growth in xenograft nude mice. Mechanistically, dht I primarily targeted Nrf2 by promoting Keap1 mediated Nrf2 degradation and inhibiting protein kinase C (PKC) induced Nrf2 phosphorylation. This leads to the suppression of Nrf2 nuclear translocation and reduction of its target gene expression. Moreover, Nrf2 overexpression effectively counteracted the anti-tumor effects of dht I, while Nrf2 knockdown significantly enhanced the inhibitory effect of dht I on GBC. Meanwhile, PKC inhibitors and nuclear import inhibitors increased the sensitivity of GBC cells to dht I treatment. Conversely, Nrf2 activators, proteasome inhibitors, antioxidants and PKC activators all antagonized dht I induced apoptosis and ROS generation in NOZ and SGC-996 cells. CONCLUSION: Our findings indicated that dht I inhibited the growth of GBC cells by regulating the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. These insights provide a strong rationale for further investigation of dht I as a potential therapeutic agent for GBC treatment.


Subject(s)
Apoptosis , Cell Proliferation , Gallbladder Neoplasms , Kelch-Like ECH-Associated Protein 1 , Mice, Nude , NF-E2-Related Factor 2 , Phenanthrenes , Reactive Oxygen Species , Signal Transduction , NF-E2-Related Factor 2/metabolism , Humans , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , Gallbladder Neoplasms/drug therapy , Phenanthrenes/pharmacology , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Phosphorylation/drug effects , Mice , Quinones/pharmacology , Furans/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Salvia miltiorrhiza/chemistry , Xenograft Model Antitumor Assays , Male , Membrane Potential, Mitochondrial/drug effects
3.
J Adv Res ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38432392

ABSTRACT

INTRODUCTION: Excessive immune activation induces tissue damage during infection. Compared to external strategies to reconstruct immune homeostasis, host balancing ways remain largely unclear. OBJECTIVES: Here we found a neuroimmune way that prevents infection-induced tissue damage. METHODS: By FACS and histopathology analysis of brain Streptococcus pneumonia meningitis infection model and behavioral testing. Western blot, co-immunoprecipitation, and ubiquitination analyze the Fluoxetine initiate 5-HT7R-STUB1-CCR5 K48-linked ubiquitination degradation. RESULTS: Fluoxetine, a selective serotonin reuptake inhibitor, or the agonist of serotonin receptor 5-HT7R, protects mice from meningitis by inhibiting CCR5-mediated excessive immune response and tissue damage. Mechanistically, the Fluoxetine-5-HT7R axis induces proteasome-dependent degradation of CCR5 via mTOR signaling, and then recruits STUB1, an E3 ubiquitin ligase, to initiate K48-linked polyubiquitination of CCR5 at K138 and K322, promotes its proteasomal degradation. STUB1 deficiency blocks 5-HT7R-mediated CCR5 degradation. CONCLUSION: Our results reveal a neuroimmune pathway that balances anti-infection immunity via happiness neurotransmitter receptor and suggest the 5-HT7R-CCR5 axis as a potential target to promote neuroimmune resilience.

4.
Biosci Rep ; 44(3)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38323526

ABSTRACT

T cell is vital in the adaptive immune system, which relays on T-cell receptor (TCR) to recognize and defend against infection and tumors. T cells are mainly divided into well-known CD4+ and CD8+ T cells, which can recognize short peptide antigens presented by major histocompatibility complex (MHC) class II and MHC class I respectively in humoral and cell-mediated immunity. Due to the Human Leukocyte Antigen (HLA) diversity and restriction with peptides complexation, TCRs are quite diverse and complicated. To better elucidate the TCR in humans, the present study shows the difference between the TCR repertoire in CD4+ and CD8+ T cells from 30 healthy donors. The result showed count, clonality, diversity, frequency, and VDJ usage in CD4+ and CD8+ TCR-ß repertoire is different, but CDR3 length is not. The Common Clone Cluster result showed that CD4+ and CD8+ TCR repertoires are connected separately between the bodies, which is odd considering the HLA diversity. More knowledge about TCR makes more opportunities for immunotherapy. The TCR repertoire is still a myth for discovery.


Subject(s)
CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell, alpha-beta , Humans , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell/genetics , HLA Antigens , CD4-Positive T-Lymphocytes
5.
Int Immunopharmacol ; 128: 111524, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38232537

ABSTRACT

BACKGROUND: A growing number of studies have found that antidepressants have anti-inflammatory effects while protecting nerves. Hypidone hydrochloride (YL-0919) is a novel highly selective 5-HT reuptake blocker. Our previous studies have demonstrated that YL-0919 exerts notable antidepressant- and anxiolytic-like as well as procognitive effects. However, whether YL-0919 can be used to treat inflammatory and infectious diseases remain unknown. In this study, we aimed to verify the anti-inflammatory effect of YL-0919 on bacterial meningitis and further explore the potential molecular mechanisms. METHODS: We performed the experiments on pneumococcal meningitis mice in vivo and S. pneumoniae infected macrophages/microglia in vitro, with or without YL-0919 treatment. Cognitive function was evaluated by open-field task, Morris water maze test, and novel object recognition test. Histopathological staining and immunofluorescence staining were used to detect the pathological damage of meningitis and NLRP3 inflammasome activation in microglia/macrophages. The expression of the STAT1/NLRP3/GSDMD signal pathway was measured by western blots. Proinflammatory cytokines associated with pyroptosis were detected by ELISA. RESULTS: YL-0919 protected mice from fatal pneumococcal meningitis, characterized by attenuated cytokine storms, decreased bacterial loads, improved neuroethology, and reduced mortality. NLRP3 plays a key role in the regulation of inflammation. When the underlying mechanisms were investigated, we found that YL-0919 inhibited the activation of NLRP3 via STAT1, and thus inhibited macrophages/microglia pyroptosis, resulting in downregulation of proinflammatory cytokines. In addition, Sigma1R was identified as a pivotal receptor that can be engaged by YL-0919 to inhibit NLRP3 activation and pyroptosis pathway in microglia/macrophages. CONCLUSIONS: These results provide new insights into the mechanisms of inflammation regulation mediated by the antidepressant YL-0919. Moreover, targeting the STAT1/NLRP3 pyroptosis pathway is a promising strategy for the treatment of infectious diseases like bacterial meningitis.


Subject(s)
Communicable Diseases , Meningitis, Pneumococcal , Piperidines , Pyridones , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammation , Cytokines , Antidepressive Agents , Anti-Inflammatory Agents , Pyroptosis , Inflammasomes
6.
Neurotox Res ; 42(1): 8, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38194189

ABSTRACT

Chemotherapy-induced neuropathic pain (CIPN) is a common side effect of antitumor chemotherapeutic agents. It describes a pathological state of pain related to the cumulative dosage of the drug, significantly limiting the efficacy of antitumor treatment. Sofas strategies alleviating CIPN still lack. Calcitonin gene-related peptide (CGRP) is a neuropeptide involved in many pathologic pains. In this study, we explored the effects of CGRP blocking on CIPN and potential mechanisms. Total dose of 20.7 mg/kg cisplatin was used to establish a CIPN mouse model. Mechanical and thermal hypersensitivity was measured using von Frey hairs and tail flick test. Western blot and immunofluorescence were utilized to evaluate the levels of CGRP and activated astrocytes in mouse spinal cord, respectively. In addition, real-time quantitative PCR (RT-qPCR) was used to detect the level of inflammatory cytokines such as IL-6, IL-1ß, and NLRP3 in vitro and in vivo. There are markedly increased CGRP expression and astrocyte activation in the spinal cord of mice following cisplatin treatment. Pretreatment with a monoclonal antibody targeting CGRP (ZR8 mAb) effectively reduced cisplatin-induced mechanical hypersensitivity and thermal nociceptive sensitization and attenuated neuroinflammation as marked by downregulated expression of IL-6, IL-1ß, and NLRP3 in the mice spinal cord and spleen. Lastly, ZR8 mAb does not interfere with the antitumor effects of cisplatin in tumor-bearing mice. Our findings indicate that neutralizing CGRP with monoclonal antibody could effectively alleviate CIPN by attenuating neuroinflammation. CGRP is a promising therapeutic target for CIPN.


Subject(s)
Calcitonin Gene-Related Peptide , Neuralgia , Animals , Mice , Cisplatin/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein , Interleukin-6 , Neuroinflammatory Diseases , Neuralgia/chemically induced , Neuralgia/drug therapy , Antibodies, Monoclonal , Interleukin-1beta
7.
J Infect Dis ; 229(3): 855-865, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-37603461

ABSTRACT

BACKGROUND: Calcitonin gene-related peptide (CGRP), an immunomodulatory neuropeptide, is important for regulating pain transmission, vasodilation, and the inflammatory response. However, the molecular mechanisms of the CGRP-mediated immune response remain unknown. METHODS: The effects of CGRP on bacterial meningitis (BM) and its underlying mechanisms were investigated in BM mice in vivo and macrophages in vitro. RESULTS: Peripheral injection of CGRP attenuated cytokine storms and protected mice from fatal pneumococcal meningitis, marked by increased bacterial clearance, improved neuroethology, and reduced mortality. When the underlying mechanisms were investigated, we found that CGRP induces proteasome-dependent degradation of major histocompatibility complex class II (MHC-II) in macrophages and then inhibits CD4+ T-cell activation. MARCH1 was identified as an E3 ligase that can be induced by CGRP engagement and promote K48-linked ubiquitination and degradation of MHC-II in macrophages. These results provide new insights into neuropeptide CGRP-mediated immune regulation mechanisms. CONCLUSIONS: We conclude that targeting the nervous system and manipulating neuroimmune communication is a promising strategy for treating intracranial infections like BM.


Subject(s)
Calcitonin Gene-Related Peptide , Meningitis, Bacterial , Mice , Animals , Calcitonin Gene-Related Peptide/metabolism , Histocompatibility Antigens Class II , Ubiquitination , Major Histocompatibility Complex , Homeostasis , Ubiquitin-Protein Ligases/metabolism
8.
Immunol Invest ; 52(1): 1-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35997714

ABSTRACT

The mechanisms by which retinoic acid-inducible gene I (RIG-I), a critical RNA virus sensor, is regulated in many biological and pathological processes remain to be determined. Here, we demonstrate that T cell immunoglobulin and mucin protein-3 (Tim-3), an immune checkpoint inhibitor, mediates infection tolerance by suppressing RIG-I-type I interferon pathway. Overexpression or blockade of Tim-3 affects type I interferon expression, virus replication, and tissue damage in mice following H1N1 infection. Tim-3 signaling decreases RIG-I transcription via STAT1 in macrophages and promotes the proteasomal dependent degradation of RIG-I by enhancing K-48-linked ubiquitination via the E3 ligase RNF-122. Silencing RIG-I reversed Tim-3 blockage-mediated upregulation of type I interferon in macrophages. We thus identified a new mechanism through which Tim-3 mediates the immune evasion of H1N1, which may have clinical implications for the treatment of viral diseases.


Subject(s)
Influenza A Virus, H1N1 Subtype , Interferon Type I , Mice , Animals , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Macrophages , Interferon Type I/genetics , Ubiquitin-Protein Ligases/genetics
9.
Front Immunol ; 14: 1323676, 2023.
Article in English | MEDLINE | ID: mdl-38259434

ABSTRACT

Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.


Subject(s)
Lung Injury , Pulmonary Fibrosis , Radiation Injuries , Radiation Pneumonitis , Humans , Lung Injury/etiology , Radiation Injuries/therapy , Radiation Pneumonitis/etiology , Dendritic Cells
10.
Int Immunopharmacol ; 113(Pt B): 109451, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36423429

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor symptoms and non-motor symptoms, and affects millions of people worldwide. Growing evidence implies ß-Hydroxybutyrate (BHB), one of the ketone bodies generated by ketogenesis, plays a neuroprotective role in neurodegenerative diseases. We aimed to verify the anti-inflammatory effect of BHB on PD and further explore potential molecular mechanisms. METHODS: We performed the experiments on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model in vivo and 1-methyl-4-phenylpyridinium (MPP+)-simulated BV2 cell model in vitro, with or without BHB pretreatment. Motor function was assessed by pole test, forced swimming test, traction test and open field test. Immunofluorescence was used to evaluate the loss of dopaminergic neurons and glial cell activation in MPTP-induced PD model mice. The expression of the STAT3/NLRP3/GSDMD signal pathway was measured by western blots. Proinflammatory cytokines was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS: BHB treatment reversed motor deficits, loss of dopaminergic neurons and glial cell activation in PD mice induced by MPTP. Moreover, BHB inhibited microglia pyroptosis by negatively regulating STAT3/NLRP3/GSDMD signal pathway, resulting in downregulation of proinflammatory cytokines (IL-1ß and IL-18) in vivo and vitro. CONCLUSION: These data suggested BHB supplement inhibited pyroptosis by down-regulating STAT3-mediated NLRP3 inflammasome activation for PD models in vivo and in vitro. Our findings provided novel insights and available interventions for the prevention and treatment of PD, and highlighted pyroptosis as a potential therapeutic target for PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , 1-Methyl-4-phenylpyridinium , 3-Hydroxybutyric Acid/therapeutic use , Cytokines , Ketone Bodies , NLR Family, Pyrin Domain-Containing 3 Protein , Parkinson Disease/drug therapy , Pyroptosis
11.
J Med Virol ; 94(7): 3233-3239, 2022 07.
Article in English | MEDLINE | ID: mdl-35322423

ABSTRACT

Although individuals with coronavirus disease 2019 (COVID-19) are known to be at increased risk for other conditions resulting from pathogenic changes (including metaplastic or anaplastic) in the lungs and other organs and organ systems, it is still unknown whether COVID-19 affects childhood intelligence. The present two-sample Mendelian randomization study aims to identify the genetic causal link between COVID-19 and childhood intelligence. Four COVID-19 genetic instrumental variants (IVs) were chosen from the largest genome-wide association studies (GWAS) for COVID-19 (hospitalized vs. population) (6406 cases and 902 088 controls of European ancestry). The largest childhood intelligence GWAS (n = 12 441 individuals of European ancestry) was used to evaluate the effect of the identified COVID-19-associated genetic IVs on childhood intelligence. We found that as the genetic susceptibility to COVID-19 increased, childhood intelligence followed a decreasing trend, according to mr_egger (ß = -0.156; p = 0.601; odds ratio [OR] = 0.856; 95% confidence interval [CI]: 0.522-1.405), simple mode (ß = -0.126; p = 0.240; OR = 0.882; 95% CI: 0.745-1.044), and weighted mode (ß = -0.121; p = 0.226; OR = 0.886; 95% CI: 0.758-1.036) analyses. This trend was further demonstrated by the weighted median (ß = -0.134; p = 0.031; OR = 0.875; 95% CI: 0.774-0.988) and the inverse variance weighted (ß = -0.152; p = 0.004; OR = 0.859; 95% CI: 0.776-0.952). Our analysis suggests a causal link between genetically increased COVID-19 and decreased childhood intelligence. Thus, COVID-19 may be a risk factor for declines in childhood intelligence.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Intelligence , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide
12.
Front Nutr ; 9: 819635, 2022.
Article in English | MEDLINE | ID: mdl-35237642

ABSTRACT

Previous observational studies have suggested an important role of omega-3 in low back pain. In the present study, we used a two-sample Mendelian randomization (MR) study to identify the putative causal link between omega-3 and low back pain. A broadly used genome-wide association study (GWAS) (n = 8,866 individuals from European ancestry) was used to select plasma omega-3 genetic instrumental variables (IVs). A previously reported GWAS (4,863 cases and 74,589 controls from European ancestry) for low back pain were used to assess the effect of plasma omega-3 levels on low back pain. MR-egger_intercept, MR-PRESSO, MR_egger, and inverse variance weighted (IVW) in Cochran's Q-test were used to determine the pleiotropy and heterogeneity, respectively. MR-egger, weighted median, IVW, and weighted mode were used to perform MR analysis. Finally, the effect of a single nucleotide polymorphism (SNP) was used to test the SNP bias. We did not find a significant pleiotropy or heterogeneity of all six selected plasma omega-3 genetic IVs in low back pain GWAS. Expectedly, we found that as plasma omega-3 levels genetically increased, the risk of low back pain had a decreased trend using MR-egger (Beta = -0.593, p = 0.228; OR = 0.553) and weighted mode (Beta = -0.251, p = 0.281; OR = 0.778). This reduced trend was further proven by weighted median (Beta = -0.436, p = 0.025; OR = 0.646) and IVW (Beta = -0.366, p = 0.049; OR = 0.694). Our analysis suggested a putative causal link between genetically increased plasma omega-3 levels and the reduced risk of low back pain in European ancestries. Thus, the supplementation of omega-3 may be important for the prevention and treatment of low back pain.

15.
Clin Rheumatol ; 41(5): 1305-1312, 2022 May.
Article in English | MEDLINE | ID: mdl-35000008

ABSTRACT

OBJECTIVES: To resolve the ongoing debate on the role of plasma omega-3 fatty acids in rheumatoid arthritis (RA), we attempted to identify the association between omega-3 intake and the risk of RA. METHODS: We analyzed data from the largest genome-wide association study (GWAS) for omega-3 fatty acids (N = 114,999 of European ancestry) and RA (14,361 cases and 43,923 controls of European ancestry). Mendelian randomization-egger_intercept, MR-PRESSO, and Cochran's Q test were used to determine pleiotropy and heterogeneity. Egger, weighted median, inverse variance weighted (IVW), simple mode, and weighted mode were used to evaluate the causal association of plasma omega-3 levels on RA. RESULTS: We found no significant pleiotropy, heterogeneity, and bias among the omega-3 genetic instrumental variables (IVs) in RA GWAS datasets. MR analysis demonstrated that as omega-3 levels genetically increased, the risk of MS increased using MR-egger (Beta = 0.137, p = 0.037; OR = 1.146, 95% CI: [1.014, 1.296]), weighted median (Beta = 0.162, p = 0.001; OR = 1.176, 95% CI: [1.070, 1.292]), IVW (Beta = 0.102, p = 0.025; OR = 1.108, 95% CI: [1.013, 1.211]), simple mode (Beta = 0.219, p = 0.149; OR = 1.245, 95% CI: [0.931, 1.665]), and weighted mode (Beta = 0.146, p = 0.006; OR = 1.157, 95% CI: [1.051, 1.274]). CONCLUSIONS: Our analysis suggested a causal association between genetically increased plasma omega-3 levels and the increased risk of RA in populations with European ancestry. Thus, to reduce the risk of RA, those of European descent should reduce omega-3 intake. Key Points • No significant pleiotropy or heterogeneity among the omega-3 genetic IVs in RA GWAS datasets. • Genetically increased plasma omega-3 levels enhanced the risk of RA in European lineages.


Subject(s)
Arthritis, Rheumatoid , Fatty Acids, Omega-3 , Arthritis, Rheumatoid/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide
16.
Mol Immunol ; 141: 79-86, 2022 01.
Article in English | MEDLINE | ID: mdl-34837777

ABSTRACT

Our previous study had shown that member 13 (Hspa13) of heat shock protein family A (Hsp70) promotes plasma cell (PC) production and antibody secretion. To further explore Hspa13 expression and function, we combined single-cell RNA-sequencing and antigen receptor lineage (BCR) analysis to characterize sheep red cell‒primed splenocytes. The single-cell transcriptional profiles revealed that Hspa13 is specifically and highly expressed in PCs. These results suggest that Hspa13 is a novel PC-specific marker. In terms of its function, we found that the CD19cre-mediated conditional knock-out (cKO) of Hspa13 reduced the expression of Ebi3 and IL-10 in PCs. Ebi3 and IL-10 are important factors in IL-4‒secreting type 2 helper T cell (Th2) activation and differentiation. As expected, we found that the Hspa13 cKO reduced IL‒4-expressing follicular helper T (Tfh2) cells. Finally, the single-cell antigen receptor analysis demonstrated that the Hspa13 cKO reduced the Aicda-mediated antibody class-switching recombination (CSR) and somatic hypermutation (SHM) in germinal centers (GCs) B cells. Altogether, the single-cell atlas of splenocytes revealed a critical indirect role for the novel PC-specific marker Hspa13 in CSR and SHM in GC B cells by promoting Ebi3 and IL-10 expression in PCs to induce IL-4-expressing Tfh2 cells. Further exploration of Hspa13 expression and function will provide valuable clues for how to use Hspa13 in the treatment of autoimmune diseases.


Subject(s)
Antibodies/immunology , Germinal Center/immunology , HSP70 Heat-Shock Proteins/immunology , Recombination, Genetic/immunology , Somatic Hypermutation, Immunoglobulin/immunology , Animals , Antigens, CD19/immunology , Biomarkers/blood , Cell Differentiation/immunology , Gene Rearrangement/immunology , Mice , Mice, Knockout , Sheep , Th2 Cells/immunology , Transcription, Genetic/immunology
17.
PLoS Pathog ; 17(9): e1009901, 2021 09.
Article in English | MEDLINE | ID: mdl-34506605

ABSTRACT

Neddylation, an important type of post-translational modification, has been implicated in innate and adapted immunity. But the role of neddylation in innate immune response against RNA viruses remains elusive. Here we report that neddylation promotes RNA virus-induced type I IFN production, especially IFN-α. More importantly, myeloid deficiency of UBA3 or NEDD8 renders mice less resistant to RNA virus infection. Neddylation is essential for RNA virus-triggered activation of Ifna gene promoters. Further exploration has revealed that mammalian IRF7undergoes neddylation, which is enhanced after RNA virus infection. Even though neddylation blockade does not hinder RNA virus-triggered IRF7 expression, IRF7 mutant defective in neddylation exhibits reduced ability to activate Ifna gene promoters. Neddylation blockade impedes RNA virus-induced IRF7 nuclear translocation without hindering its phosphorylation and dimerization with IRF3. By contrast, IRF7 mutant defective in neddylation shows enhanced dimerization with IRF5, an Ifna repressor when interacting with IRF7. In conclusion, our data demonstrate that myeloid neddylation contributes to host anti-viral innate immunity through targeting IRF7 and promoting its transcriptional activity.


Subject(s)
Immunity, Innate/immunology , Interferon Regulatory Factor-7/immunology , Myeloid Cells/immunology , RNA Virus Infections/immunology , RNA Viruses/immunology , Animals , Interferon Regulatory Factor-7/biosynthesis , Mice , Myeloid Cells/metabolism , NEDD8 Protein/deficiency , Protein Processing, Post-Translational , Ubiquitins/deficiency
18.
Elife ; 102021 06 10.
Article in English | MEDLINE | ID: mdl-34110282

ABSTRACT

Nuclear factor 90 (NF90) is a novel virus sensor that serves to initiate antiviral innate immunity by triggering stress granule (SG) formation. However, the regulation of the NF90-SG pathway remains largely unclear. We found that Tim-3, an immune checkpoint inhibitor, promotes the ubiquitination and degradation of NF90 and inhibits NF90-SG-mediated antiviral immunity. Vesicular stomatitis virus (VSV) infection induces the up-regulation and activation of Tim-3 in macrophages, which in turn recruit the E3 ubiquitin ligase TRIM47 to the zinc finger domain of NF90 and initiate a proteasome-dependent degradation via K48-linked ubiquitination at Lys297. Targeted inactivation of Tim-3 enhances the NF90 downstream SG formation by selectively increasing the phosphorylation of protein kinase R and eukaryotic translation initiation factor 2α, the expression of SG markers G3BP1 and TIA-1, and protecting mice from VSV challenge. These findings provide insights into the crosstalk between Tim-3 and other receptors in antiviral innate immunity and its related clinical significance.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Immunity, Innate/immunology , Nuclear Factor 90 Proteins , Ubiquitination/immunology , Virus Diseases/immunology , Animals , Cytoplasmic Granules/immunology , Cytoplasmic Granules/metabolism , Hepatitis A Virus Cellular Receptor 2/immunology , Hepatitis A Virus Cellular Receptor 2/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Nuclear Factor 90 Proteins/immunology , Nuclear Factor 90 Proteins/metabolism , Rhabdoviridae Infections/immunology , Vesiculovirus
19.
Front Immunol ; 12: 667478, 2021.
Article in English | MEDLINE | ID: mdl-34025669

ABSTRACT

Viral encephalitis is the most common cause of encephalitis. It is responsible for high morbidity rates, permanent neurological sequelae, and even high mortality rates. The host immune response plays a critical role in preventing or clearing invading pathogens, especially when effective antiviral treatment is lacking. However, due to blockade of the blood-brain barrier, it remains unclear how peripheral immune cells contribute to the fight against intracerebral viruses. Here, we report that peripheral injection of an antibody against human Tim-3, an immune checkpoint inhibitor widely expressed on immune cells, markedly attenuated vesicular stomatitis virus (VSV) encephalitis, marked by decreased mortality and improved neuroethology in mice. Peripheral injection of Tim-3 antibody enhanced the recruitment of immune cells to the brain, increased the expression of major histocompatibility complex-I (MHC-I) on macrophages, and as a result, promoted the activation of VSV-specific CD8+ T cells. Depletion of macrophages abolished the peripheral injection-mediated protection against VSV encephalitis. Notably, for the first time, we found a novel post-translational modification of MHC-I by Tim-3, wherein, by enhancing the expression of MARCH9, Tim-3 promoted the proteasome-dependent degradation of MHC-I via K48-linked ubiquitination in macrophages. These results provide insights into the immune response against intracranial infections; thus, manipulating the peripheral immune cells with Tim-3 antibody to fight viruses in the brain may have potential applications for combating viral encephalitis.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antigen-Presenting Cells/drug effects , Brain/drug effects , Encephalitis, Viral/prevention & control , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Macrophages/drug effects , Rhabdoviridae Infections/prevention & control , Vesiculovirus/immunology , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/virology , Brain/immunology , Brain/metabolism , Brain/virology , Chlorocebus aethiops , Disease Models, Animal , Encephalitis, Viral/immunology , Encephalitis, Viral/metabolism , Encephalitis, Viral/virology , HEK293 Cells , Hepatitis A Virus Cellular Receptor 2/immunology , Histocompatibility Antigens Class I/metabolism , Host-Pathogen Interactions , Humans , Injections, Intraperitoneal , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Male , Mice , Mice, Inbred C57BL , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RAW 264.7 Cells , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/metabolism , Rhabdoviridae Infections/virology , Ubiquitination , Vero Cells , Vesiculovirus/pathogenicity , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...