Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 170: 222-229, 2019 03.
Article in English | MEDLINE | ID: mdl-30594693

ABSTRACT

In this study, bismuth-TiO2 nanotube (Bi-TNT) composites were used for the treatment of industrial wastewater. Bi-TNT were synthesized using two- and one-step anodization methods. The obtained composites were analyzed using X-ray diffraction, field emission scanning electron microscopy, UV-visible diffuse reflectance spectroscopy, Energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. For the two-step Bi-TNT composites, we investigated the effect of different Bi deposition times, Bi concentrations, and Bi deposition voltages on photodegradation efficiency. For the one-step Bi-TNT composites, we investigated the effect of different anodization voltages, anodization times, and Bi concentrations. Initially, the optimal synthesis conditions for two- and one-step Bi-TNT catalysts were identified and then these optimized conditions were used for industrial wastewater treatment that was collected from Banwol Sihwa Industrial Complex Republic of Korea. The Bi-TNT two- and one-step composites showed 2.0 and 2.5 times higher photocatalytic activity, respectively, for industrial wastewater treatment than that of TNT in visible-light. Recycling of Bi-TNT composites showed that the one-step composite method was more efficient and stable than the two-step method because Bi coupling and nanotube formation simultaneously occurred.


Subject(s)
Bismuth , Industrial Waste , Nanocomposites , Waste Disposal, Fluid/methods , Catalysis , Republic of Korea , Titanium/chemistry , Wastewater
2.
ACS Appl Mater Interfaces ; 5(22): 12005-10, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24195666

ABSTRACT

Mesoporous silicon nanofibers (m-SiNFs) have been fabricated using a simple and scalable method via electrospinning and reduction with magnesium. The prepared m-SiNFs have a unique structure in which clusters of the primary Si nanoparticles interconnect to form a secondary three-dimensional mesoporous structure. Although only a few nanosized primary Si particles lead to faster electronic and Li(+) ion diffusion compared to tens of nanosized Si, the secondary nanofiber structure (a few micrometers in length) results in the uniform distribution of the nanoparticles, allowing for the easy fabrication of electrodes. Moreover, these m-SiNFs exhibit impressive electrochemical characteristics when used as the anode materials in lithium ion batteries (LIBs). These include a high reversible capacity of 2846.7 mAh g(-1) at a current density of 0.1 A g(-1), a stable capacity retention of 89.4% at a 1 C rate (2 A g(-1)) for 100 cycles, and a rate capability of 1214.0 mAh g(-1) (at 18 C rate for a discharge time of ∼3 min).

SELECTION OF CITATIONS
SEARCH DETAIL
...