Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38611937

ABSTRACT

Fluorescent sensors with single reading are generally subject to unpredictable disturbs from environmental and artificial factors. In order to overcome this barrier of detection reliability, a paper-based optical sensor with proportional fluorescence was established and further combined with a smartphone for visual, on-site and quantitative detection of Fe3+, which affects the color, smell and taste of water, and endangers the health of plants and animals. The ratio fluorescent probe was fabricated by rhodamine B and carbon quantum dots derived from xylan. The red fluorescence of rhodamine B was inert to Fe3+, which was referred to as background. And blue emitting carbon quantum dots functioned as signal report units, which would be quenched by Fe3+ and make the fluorescence of the ratio probe change from purple to red. The quantitative detection of Fe3+ was conducted by investigating the RGB value of fluorescent images with a smartphone. With the increase of Fe3+ concentration, the R/B (red/blue) value of the fluorescent paper gradually increased. The linear detection range was 10-180 µM, and the limit of detection was 198.2 nM. The application of ratio fluorescent paper with a smartphone provides a facile method for the rapid detection of ions.

2.
Mater Today Bio ; 19: 100592, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36936399

ABSTRACT

Although the past decade has witnessed unprecedented medical advances, achieving rapid and effective hemostasis remains challenging. Uncontrolled bleeding and wound infections continue to plague healthcare providers, increasing the risk of death. Various types of hemostatic materials are nowadays used during clinical practice but have many limitations, including poor biocompatibility, toxicity and biodegradability. Recently, there has been a burgeoning interest in organisms that stick to objects or produce sticky substances. Indeed, applying biological adhesion properties to hemostatic materials remains an interesting approach. This paper reviews the biological behavior, bionics, and mechanisms related to hemostasis. Furthermore, this paper covers the benefits, challenges and prospects of biomimetic hemostatic materials.

3.
Front Cell Dev Biol ; 10: 1040311, 2022.
Article in English | MEDLINE | ID: mdl-36407100

ABSTRACT

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.

4.
J Colloid Interface Sci ; 607(Pt 2): 1313-1322, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34583036

ABSTRACT

A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles (Au@CQDs). MXene of good electrical conductivity was used as the immobilized matrix to fabricate Au@CQDs-MXene nanocomposites with the advantages of good electrical conductivity and electrocatalysis. An electrochemical sensor for nitrite monitor was obtained by loading the Au@CQDs-MXene on a glassy carbon electrode. The sensor presents high sensitivity, good stability, wide linear range, and excellent selectivity due to the high catalytic activity of AuNPs and CQDs, the large specific surface area of MXene, and exceptional electrical conductivity of AuNPs and MXene. Under the optimal condition, the linear detection range of the sensor was from 1 µM to 3200 µM with a detection limit of 0.078 µM (S/N = 3), which was superior to most reported sensors using differential pulse voltammetry (DPV) method. Furthermore, this sensor was successfully applied to detect nitrite in tap water and salted vegetables with satisfactory recoveries. This modified electrocatalytic sensor shows a new pathway to fabricate nitrite detection sensor with feasibility for practical application.


Subject(s)
Metal Nanoparticles , Nanocomposites , Quantum Dots , Carbon , Electrochemical Techniques , Electrodes , Gold , Limit of Detection , Nitrites
5.
Bioconjug Chem ; 28(2): 636-641, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28035817

ABSTRACT

Proteinosomes are a type of protein-based spherical capsules, which have potential applications in drug delivery, cell imaging, gene expression, and biocatalysis. In this research, a novel approach to the fabrication of proteinosomes entirely composed of protein molecules based on self-assembly of a supramolecular protein-polymer conjugate is proposed. A supramolecular protein-polymer conjugate was prepared by mixing ßCD-modified bovine serum albumin (BSA) and adamantane-terminated poly(N-isopropylamide) (Ad-PNIPAM) in aqueous solution. The BSA-PNIPAM bioconjugate self-assembled into micelles with PNIPAM cores and BSA coronae at a temperature above the lower critical solution temperature (LCST) of PNIPAM. After cross-linking of BSA in the coronae, and followed by addition of excess ßCD, PNIPAM chains were cleaved from the micellar structures, and nanoscale proteinosomes were prepared. The dual-responsive proteinosomes dissociated in the presence of trypsin or glutathione.


Subject(s)
Acrylic Resins/chemistry , Adamantane/analogs & derivatives , Drug Carriers/chemistry , Micelles , Serum Albumin, Bovine/chemistry , beta-Cyclodextrins/chemistry , Animals , Cattle
SELECTION OF CITATIONS
SEARCH DETAIL
...