Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2321255121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38564632

ABSTRACT

Omega-3 polyunsaturated fatty acids (PUFA) found primarily in fish oil have been a popular supplement for cardiovascular health because they can substantially reduce circulating triglyceride levels in the bloodstream to prevent atherosclerosis. Beyond this established extracellular activity, here, we report a mode of action of PUFA, regulating intracellular triglyceride metabolism and lipid droplet (LD) dynamics. Real-time imaging of the subtle and highly dynamic changes of intracellular lipid metabolism was enabled by a fluorescence lifetime probe that addressed the limitations of intensity-based fluorescence quantifications. Surprisingly, we found that among omega-3 PUFA, only docosahexaenoic acid (DHA) promoted the lipolysis in LDs and reduced the overall fat content by approximately 50%, and consequently helped suppress macrophage differentiation into foam cells, one of the early steps responsible for atherosclerosis. Eicosapentaenoic acid, another omega-3 FA in fish oil, however, counteracted the beneficial effects of DHA on lipolysis promotion and cell foaming prevention. These in vitro findings warrant future validation in vivo.


Subject(s)
Atherosclerosis , Fatty Acids, Omega-3 , Humans , Lipolysis , Fluorescence , Fatty Acids, Omega-3/metabolism , Fish Oils/pharmacology , Docosahexaenoic Acids/metabolism , Macrophages/metabolism , Triglycerides
2.
Anal Chem ; 95(44): 16243-16250, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37890170

ABSTRACT

Fluorescence microscopy is one of the most important tools in the studies of cell biology and many other fields, but two fundamental issues, photobleaching and phototoxicity, associated with the fluorophores have still limited its use for long-term and strong-illumination imaging of live cells. Here, we report a new concept of fluorophore engineering chemistry, synchronous photoactivation-imaging (SPI) fluorophores, activating and exciting fluorophores by a single light source to thus avoid the repeated switches between activation and excitation lights. The chemically reconstructed, nonemissive fluorophores can be photolyzed to allow continuous replenishing of "bright-state" probes detectable by standard fluorescent microscopes in the imaging process so as to bypass the photobleaching barrier to greatly extend the imaging period. Equally importantly, SPI fluorophores substantially reduce photocytotoxicity due to the scavenging of reactive oxygen species (ROS) by a photoactivable group and the slow release of "bright-state" probes to minimize ROS generation. Using SPI fluorophores, the time-lapsed confocal (>16 h) and super-resolution (>3 h) imaging of subcellular organelles under intensive illumination (50 MW/cm2) were achieved in live cells.


Subject(s)
Fluorescent Dyes , Photobleaching , Reactive Oxygen Species , Microscopy, Fluorescence/methods
3.
Anal Chem ; 95(23): 8914-8921, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37246518

ABSTRACT

Free radicals and their induced oxidative damage in living organisms are related to many diseases. Natural substances with antioxidant capacity are effective in scavenging free radicals, which could slow down aging and prevent diseases. However, the existing methods for the evaluation of antioxidant activity mostly required the use of complex instruments and operations. In this work, we proposed a unique method to determine the total antioxidant capacity (TAC) in real samples through a photosensitization-mediated oxidation system. N- and P-doped long-lived phosphorescent carbon dots (NPCDs) were developed, which exhibited the effective intersystem crossing from the singlet to the triplet state under UV light irradiation. Mechanism study confirmed that the energy of excited triplet state in NPCDs generated superoxide radicals and singlet oxygen through type I and type II photoreactions, respectively. On this basis, the quantitative determination of TAC in fresh fruits was achieved using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic bridge in the photosensitization-mediated oxidation system. This demonstration will not only provide a facile way to analyze antioxidant capacity in practical samples but also broaden the applications of phosphorescent carbon dots.


Subject(s)
Antioxidants , Photosensitizing Agents , Antioxidants/metabolism , Carbon , Oxidation-Reduction , Free Radicals
4.
Talanta ; 258: 124346, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36889193

ABSTRACT

Viscosity in biological systems is a critical factor for various physiological process, including signal transduction and metabolisms of substance and energy. Abnormal viscosity has been proven as a key feature of many diseases, thereby real-time monitoring of viscosities in cells and in vivo is of great significance for the diagnosis and therapy of related diseases. Up to date, it is still challenging to monitor viscosity cross-platform from organelles to cells to animals with a single probe. Here, we report a benzothiazolium-xanthene probe with rotatable bonds that switch on the optical signals in high viscosity environment. The enhancements of absorption, fluorescence intensity and lifetime signals allow to dynamically monitoring the viscosity change in mitochondria and cells, while near infrared absorption and emission facilitate imaging the viscosity with both fluorescence and photoacoustic imaging in animals. The cross-platform strategy is capable of monitoring the microenvironment with multifunctional imaging across various levels.


Subject(s)
Fluorescent Dyes , Optical Imaging , Humans , Animals , Viscosity , Fluorescent Dyes/chemistry , Optical Imaging/methods , Mitochondria/metabolism , HeLa Cells , Multimodal Imaging
5.
RSC Adv ; 12(30): 19424-19430, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35865591

ABSTRACT

Stimulated emission depletion (STED) microscopy provides a powerful tool for visualizing the ultrastructure and dynamics of subcellular organelles, however, the photobleaching of organelle trackers have limited the application of STED imaging in living cells. Here, we report photostable and amphiphilic carbon dots (Phe-CDs) with bright orange fluorescence via a simple one-pot hydrothermal treatment of o-phenylenediamine and phenylalanine. The obtained Phe-CDs not only had high brightness (quantum yield ∼18%) but also showed excellent photostability under ultraviolet irradiation. The CDs can quickly penetrate into cells within 2 min and are specific for intracellular ER. The further investigations by Phe-CDs revealed the reconstitution process of ER from loosely spaced tubes into a continuously dense network of tubules and sheets during cell division. Importantly, compared with the standard microscopy, STED super-resolution imaging allowed the tracking of the ER ultrastructure with a lateral resolution less than 100 nm and the pores within the ER network are clearly visible. Moreover, the three dimensional (3D) structure of ER was also successfully reconstructed from z-stack images due to the excellent photostability of Phe-CDs.

6.
Analyst ; 147(11): 2405-2411, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35579289

ABSTRACT

As a specific biological marker for the occurrence and progression of tumor cells, detection of telomerase activity is of great importance for the physiological research of tumors. However, in situ measurement of telomerase activity in living cells still remains a challenge. Herein, we report a precisely designed oligonucleotide-functionalized gold nanoparticle probe that has realized high-efficiency detection of telomerase activity for cellular imaging toward the identification of tumors. Our method has achieved intracellular imaging of telomerase activity and shows good performance towards the distinction of tumor cells from normal ones. Moreover, the method reported here for tracking tumor cells in blood has wide applications in cancer diagnosis. This strategy offers an opportunity for cancer diagnosis, guiding therapy and evaluating prognosis.


Subject(s)
Metal Nanoparticles , Neoplasms , Telomerase , Gold , HeLa Cells , Humans , Neoplasms/diagnostic imaging , Oligonucleotides , Optical Imaging , Telomerase/metabolism
7.
Anal Bioanal Chem ; 414(14): 4235-4244, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35449469

ABSTRACT

Chemical sensing for the sensitive and reliable detection of mercury(II) ions (Hg2+) is of great importance in environmental protection, food safety, and biomedical applications. Due to the bio-enrichment property of Hg2+ in organisms, it is particularly meaningful to develop an effective tool that can in situ and rapidly monitor the level of Hg2+ in living organisms. In this work, we report ligand functionalized gold-silver bimetallic nanoclusters with bright red fluorescence as intracellular probes for imaging Hg2+ in living cells and zebrafish. The bimetallic nanoclusters of DTT-GSH@Au/AgNCs (DG-Au/AgNCs) with strong fluorescence that benefited from the synergistic effect of Au and Ag atoms were obtained through a one-pot synthesis method, incorporating glutathione (GSH) and dithiothreitol (DTT) as the reducers and functionalized ligands. Attractively, the bright red fluorescence of DG-Au/AgNCs could be rapidly and selectively quenched by Hg2+ within 1 min with a very low detection limit of 1.01 nM. Additionally, DG-Au/AgNCs had a great advantage in the detection of Hg2+ in living cells and zebrafish owing to its notably strong red fluorescence at 665 nm, which could avoid effectively auto-fluorescence interference from the organism. Such easily prepared bimetallic fluorescent nanoclusters would be expected to provide a noninvasive and sensitive approach in the detection of heavy metals in situ for environmental protection.


Subject(s)
Mercury , Metal Nanoparticles , Animals , Glutathione , Gold/chemistry , Ions/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrometry, Fluorescence/methods , Zebrafish
8.
Anal Chem ; 94(12): 5173-5180, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35245042

ABSTRACT

Endoplasmic reticulum (ER) is an important organelle of a membranous tubule network in cells for the synthesis, assembly, and modification of peptides, proteins, and enzymes. Autophagy and destruction of ER commonly occur during normal cellular activities. These processes have been studied extensively, but the spontaneous ER regeneration process is poorly understood because of the lack of molecular tools capable of distinguishing the intact, damaged, autophagic, and regenerative ER in live cells. Herein, we report a dual-localizing, environment-responsive, and lifetime-sensitive fluorescent probe for real-time monitoring ER autophagy and regeneration in live cells. Using this tool, the fluorescence lifetime imaging can quantitatively determine the degrees of ER destruction and spontaneous recovery. Significantly, we show that triglycerides supplied in lipid droplets can efficiently repair ER via the two critical pathways: (i) supplying materials for ER repair by converting triglycerides into fatty acids and diglycerides and (ii) partially inhibiting autophagy for stressed ER.


Subject(s)
Endoplasmic Reticulum , Optical Imaging , Autophagy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Fluorescent Dyes/metabolism , Optical Imaging/methods , Triglycerides/metabolism
9.
Anal Chem ; 93(40): 13667-13672, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34591458

ABSTRACT

Understanding signaling molecules in regulating organelles dynamics and programmed cell death is critical for embryo development but is also challenging because current imaging probes are incapable of simultaneously imaging the signaling molecules and the intracellular organelles they interact with. Here, we report a chemically and environmentally dual-responsive imaging probe that can react with gasotransmitters and label cell nuclei in distinctive fluorescent colors, similar to the adaptive coloration of chameleons. Using this intracellular chameleon-like probe in three-dimensional (3D) super-resolution dynamic imaging of live cells, we discovered SO2 as a critical upstream signaling molecule that activates nucleophagy in programmed cell death. An elevated level of SO2 prompts kiss fusion between the lysosomal and nuclear membranes and nucleus shrinkage and rupture. Significantly, we revealed that the gasotransmitter SO2 is majorly generated in the yolk, induces autophagy there at the initial stage of embryo development, and is highly related to the development of the auditory nervous system.


Subject(s)
Fluorescent Dyes , Sulfur Dioxide , Autophagy , Cell Nucleus , Embryonic Development , HeLa Cells , Humans
10.
Anal Methods ; 13(28): 3181-3186, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34169932

ABSTRACT

Mitochondrial matrix contains numerous metabolism-related proteins/enzymes and nucleic acids, which play key roles in the process of energy generation and signal transduction. The fluctuations in mitochondrial biomacromolecular levels lead to the changes in the mitochondrial matrix viscosity; therefore, real-time measuring the mitochondrial matrix viscosity is of great significance for the in-depth understanding of the mitochondrial physiology and pathobiology. However, investigations are limited due to the lack of a mitochondrial matrix-specific molecular rotor. Herein, we report a design of a molecular rotor that is specifically enriched in the mitochondrial matrix. The red fluorescence of the rotor switches on when the viscosity increases, enabling the real-time monitoring of the viscosity change therein. Interestingly, the rotor showed non-fluorescence behaviour in the liposome (mimicking membrane structure), avoiding fluorescence interference from the mitochondrial bilayer membrane. Super-resolution imaging reveals that the viscosity is uneven in an individual mitochondrion.


Subject(s)
Fluorescent Dyes , Mitochondria , Diagnostic Imaging , Fluorescence , Viscosity
11.
Chem Commun (Camb) ; 57(54): 6628-6631, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34124718

ABSTRACT

A ratiometric fluorescent probe with a large emission shift was developed for the accurate measurement of hydrogen peroxide (H2O2) in sophisticated pyroptosis signaling pathways. The results reported here demonstrate that H2O2, as a principal member of ROS, is a critical upstream signaling molecule in regulating pyroptosis.


Subject(s)
Fluorescent Dyes/metabolism , Hydrogen Peroxide/metabolism , Pyroptosis , Signal Transduction , Cell Line , Cell Survival , Humans
12.
Anal Methods ; 12(18): 2385-2390, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32930264

ABSTRACT

Since the expression level of human telomerase RNA (hTR) in tumor cells is much higher than that in normal cells, the determination of hTR is of prime importance in biological research of tumors. In this work, we report molecular beacon-functionalized gold nanoparticles for hTR imaging in live cells. The molecular beacon has a loop-and-stem structure with hTR recognition sequences and a red fluorophore Cy5. In the presence of hTR, the hTR sequence could be hybridized with the loop of molecular beacon to form a duplex DNA chain and thus the fluorescence state switched from "off" to "on". After co-incubation with cells, the probe could readily permeate into cells, leading to the in situ imaging of intracellular hTR. The proposed approach could be used to differentiate tumor cells from normal ones and assess hTR expression levels in different tumor cells. Furthermore, the proposed approach allowed us to dynamically monitor the expression level of hTR in live cells and holds great potential for application in tumor diagnosis and hTR-related drug delivery.


Subject(s)
Gold , Metal Nanoparticles , Molecular Imaging , RNA , Telomerase , Gold/chemistry , Humans , Molecular Imaging/methods , Neoplasms/diagnostic imaging , RNA/analysis , RNA/ultrastructure , Telomerase/analysis , Telomerase/ultrastructure
13.
Angew Chem Int Ed Engl ; 59(37): 16154-16160, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32573047

ABSTRACT

Understanding the biomolecular interactions in a specific organelle has been a long-standing challenge because it requires super-resolution imaging to resolve the spatial locations and dynamic interactions of multiple biomacromolecules. Two key difficulties are the scarcity of suitable probes for super-resolution nanoscopy and the complications that arise from the use of multiple probes. Herein, we report a quinolinium derivative probe that is selectively enriched in mitochondria and switches on in three different fluorescence modes in response to hydrogen peroxide (H2 O2 ), proteins, and nucleic acids, enabling the visualization of mitochondrial nucleoprotein dynamics. STED nanoscopy reveals that the proteins localize at mitochondrial cristae and largely fuse with nucleic acids to form nucleoproteins, whereas increasing H2 O2 level leads to disassociation of nucleic acid-protein complexes.


Subject(s)
Fluorescent Dyes/chemistry , Mitochondria/metabolism , Nuclear Proteins/metabolism , Reactive Oxygen Species/metabolism , Hep G2 Cells , Humans , Hydrogen Peroxide/metabolism , Nucleic Acids/metabolism
14.
Talanta ; 216: 120941, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32456907

ABSTRACT

Understanding lysosome-related physiology needs specific lysosome probes to track the biological processes of lysosome in living cells. Here, we report an azacyclo-modified fluorescent probe that has a large Stokes shift, good photostability and negligible cytotoxicity for highly specific labeling of lysosome and autolysosome in living cells. The probes with different kinds of azacyclo groups on parent dye dansyl are screened to show that dansyl-cycleanine (DNS-C) with four nitrogen atoms possesses the best lysosome-localized ability. And DNS-C as a universal tracker exhibits excellent ability for lysosome labeling in different cell lines with high overlap coefficients (≥0.90). Different from a commercially available LysoTracker, the Stokes shift of DNS-C up to 240 nm (λex/em = 330/570 nm), is much larger than that of LysoTracker ~20 nm (λex/em = 573/595 nm). More importantly, the fluorescence of DNS-C keeps still high brightness after a time-lapsed imaging for 40 min in living cells, implying its remarkable photostability for long-term tracking. In addition, DNS-C can also clearly image the autolysosome, a critical subcellular compartment, forming by the fusion of lysosome with autophagosome in autophagy. These results suggest the promising utility of our probe as a powerful tool to real-time trace physiological processes of lysosomes.


Subject(s)
Aza Compounds/chemistry , Fluorescent Dyes/chemistry , Lysosomes/chemistry , Aza Compounds/chemical synthesis , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Optical Imaging , Tumor Cells, Cultured
15.
Adv Sci (Weinh) ; 6(14): 1900855, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31380218

ABSTRACT

Since the first discovery of luminescent graphene oxide (GO), exponentially increasing investigations on the tunable structures and surfaces for modulating its optical properties have struggled to expand applications in imaging, sensing, biomedical diagnostics, and so on. Here, the latest works on reconstructing or modifying the structures and surfaces of GO to achieve diverse luminescence are systematically reviewed, including fluorescence, electroluminescence, and chemiluminescence. Moreover, the fundamental difficulties of the investigations and applications of luminescent GO nanomaterials are clarified to inspire more constructive thoughts for expanding their application boundaries.

16.
Angew Chem Int Ed Engl ; 58(21): 7087-7091, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30912239

ABSTRACT

The dynamics of DNA and RNA structures in live cells are important for understanding cell behaviors, such as transcription activity, protein expression, cell apoptosis, and hereditary disease, but are challenging to monitor in live organisms in real time. The difficulty is largely due to the lack of photostable imaging probes that can distinguish between DNA and RNA, and more importantly, are capable of crossing multiple membrane barriers ranging from the cell/organelle to the tissue/organ level. We report the discovery of a cationic carbon quantum dot (cQD) probe that emits spectrally distinguishable fluorescence upon binding with double-stranded DNA and single-stranded RNA in live cells, thereby enabling real-time monitoring of DNA and RNA localization and motion. A surprising finding is that the probe can penetrate through various types of biological barriers in vitro and in vivo. Combined with standard and super-resolution microscopy, photostable cQDs allow time-lapse imaging of chromatin and nucleoli during cell division and Caenorhabditis elegans (C. elegans) growth.


Subject(s)
Caenorhabditis elegans/metabolism , Carbon/chemistry , Cell Membrane Permeability , DNA/chemistry , Optical Imaging/methods , Quantum Dots/chemistry , RNA/chemistry , Animals , Caenorhabditis elegans/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA/analysis , Fluorescence , HeLa Cells , Humans , Nucleic Acid Conformation , RNA/analysis
17.
Angew Chem Int Ed Engl ; 58(8): 2261-2265, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30589211

ABSTRACT

Enzyme activity in live cells is dynamically regulated by small-molecule transmitters for maintaining normal physiological functions. A few probes have been devised to measure intracellular enzyme activities by fluorescent imaging, but the study of the regulation of enzyme activity via gasotransmitters in situ remains a long-standing challenge. Herein, we report a three-channel imaging correlation by a single dual-reactive fluorescent probe to measure the dependence of phosphatase activity on the H2 S level in cells. The two sites of the probe reactive to H2 S and phosphatase individually produce blue and green fluorescent responses, respectively, and resonance energy transfer can be triggered by their coexistence. Fluorescent analysis based on the three-channel imaging correlation shows that cells have an ideal level of H2 S to promote phosphatase activity up to its maximum. Significantly, a slight deviation from this H2 S level leads to a sharp decrease of phosphatase activity. The discovery further strengthens our understanding of the importance of H2 S in cellular signaling and in various human diseases.


Subject(s)
Fluorescent Dyes/metabolism , Gasotransmitters/metabolism , Optical Imaging , Phosphoric Monoester Hydrolases/metabolism , Fluorescent Dyes/chemistry , Gasotransmitters/chemistry , HeLa Cells , Humans , Hydrogen Sulfide/metabolism , Molecular Structure
18.
Nanoscale ; 10(19): 9386-9392, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29740658

ABSTRACT

Human telomerase RNA (hTR), a template of telomerase for telomeric repeat synthesis, was used to reflect the telomerase activity and act as a potential target of antitumor therapy. Here, we report a novel DNA-conjugated AuNP probe termed sticky-flares for the in situ detection of intracellular human telomerase RNA. The sticky-flares probe is capable of entering living cells directly without any auxiliary and recognizing the binding domain of human telomerase RNA. On recognition, the fluorophore-modified recognition flares can specifically bind to the target, separate from the sticky-flares and act as a fluorescent reporter to quantify and dynamically profile human telomerase RNA in living cells. We envision that the sticky-flares probe would be a valuable platform to investigate the function and regulation of hTR in antitumor therapy and hTR-related drug invention.


Subject(s)
DNA Probes , Gold , Metal Nanoparticles , RNA/analysis , Telomerase/analysis , A549 Cells , Fluorescent Dyes , Humans , KB Cells , Liposomes , Microscopy, Confocal , Oligodeoxyribonucleotides, Antisense
19.
Analyst ; 143(8): 1881-1889, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29560968

ABSTRACT

Hydrogen sulfide (H2S) is a key signaling molecule in the cytoprotection, vascular mediation and neurotransmission of living organisms. In-depth understanding of its production, trafficking, and transformation in cells is very important in the way H2S mediates cellular signal transductions and organism functions; it also motivates the development of H2S probes and imaging technologies. A fundamental challenge, however, is how to engineer probes with sensitivity and cellular penetrability that allow detection of spontaneous production of H2S in the entire cell space and live animals. Here, we report a rationally designed molecular switch capable of accessing all intracellular compartments, including the nucleus, lysosomes and mitochondria, for H2S detection. Our probe comprised three functional domains (H2S sensing, fluorescence, and biomembrane penetration), could enter almost all cell types readily, and exhibit a rapid and ultrasensitive response to H2S (≤120-fold fluorescence enhancement) for the dynamic mapping of spontaneously produced H2S as well as its distribution in the whole cell. In particular, the probe traversed blood/tissue/cell barriers to achieve mapping of endogenous H2S in metabolic organs of a live Danio rerio (zebrafish). These results open-up exciting opportunities to investigate H2S physiology and H2S-related diseases.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide/analysis , Animals , Cell Line , Cell Nucleus/chemistry , Fluorescence , Humans , Lysosomes/chemistry , Mitochondria/chemistry , Zebrafish
20.
ACS Nano ; 12(4): 3629-3637, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29595962

ABSTRACT

Distinguishing tumor cells from normal cells holds the key to precision diagnosis and effective intervention of cancers. The fundamental difficulties, however, are the heterogeneity of tumor cells and the lack of truly specific and ideally universal cancer biomarkers. Here, we report a concept of tumor cell detection, bypassing the specific genotypic and phenotypic features of different tumor cell types and directly going toward the hallmark of cancer, uncontrollable growth. Combining spherical nucleic acids (SNAs) with exquisitely engineered molecular beacons (SNA beacons, dubbed SNAB technology) is capable of identifying tumor cells from normal cells based on the molecular phenotype of telomerase activity, largely bypassing the heterogeneity problem of cancers. Owing to the cell-entry capability of SNAs, the SNAB probe readily achieves tumor cell detection across multiple platforms, ranging from solution-based assay, to single cell imaging and in vivo solid tumor imaging (unlike PCR that is restricted to cell lysates). We envision the SNAB technology will impact cancer diagnosis, therapeutic response assessment, and image-guided surgery.


Subject(s)
Neoplasms/diagnostic imaging , Nucleic Acids/chemistry , Telomerase/chemistry , Animals , Cells, Cultured , Humans , Mice , Mice, Nude , Neoplasms/metabolism , Nucleic Acids/metabolism , Optical Imaging , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...