Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(51): e2304213120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38085773

ABSTRACT

The disequilibrium of amyloid ß-peptide (Aß) between the central and peripheral pools has been claimed as an initiating event in Alzheimer's disease (AD). In this study, we employ discoidal high-density lipoproteins (HDL-Disc) mimicking Aß antibody for directional flux of Aß from central to peripheral catabolism, with desirable safety and translation potential. Structurally, HDL-Disc assembly (polyDisc) is prepared with aid of chitosan derivative polymerization. After intranasal administration and response to slightly acidic nasal microenvironment, polyDisc depolymerizes into carrier-free HDL-Disc with chitosan derivatives that adhere to the mucosal layer to reversibly open tight junctions, helping HDL-Disc penetrate the olfactory pathway into brain. Thereafter, HDL-Disc captures Aß into microglia for central clearance or ferries Aß out of the brain for liver-mediated compensatory catabolism. For synergy therapy, intranasal administration of polyDisc can effectively reduce intracerebral Aß burden by 97.3% and vascular Aß burden by 73.5%, ameliorate neurologic damage, and rescue memory deficits in APPswe/PS1dE9 transgenic AD mice with improved safety, especially vascular safety. Collectively, this design provides a proof of concept for developing Aß antibody mimics to mobilize a synergy of central and peripheral Aß clearance for AD treatment.


Subject(s)
Alzheimer Disease , Chitosan , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Chitosan/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Mice, Transgenic , Disease Models, Animal
2.
Adv Mater ; 35(40): e2302367, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37543432

ABSTRACT

Mesenchymal stem cell (MSC) therapies experience steadfast clinical advances but are still hindered by inefficient site-specific migration. An adaptable MSC membrane fusogenicity technology is conceptualized for lipid raft-mediated targeting ligand embedding by using toolkits of discoidal high-density lipoprotein (HDL)-containing biomimicking 4F peptides. According to the pathological clues of brain diseases, the vascular cell adhesion molecule 1 specialized VBP peptide is fused with 4F to assemble 4F-VBP (HDL), which acts as a biobridge and transfers VBP onto the living cell membrane via lipid rafts for surface engineering of MSCs in suspension. When compared with the membrane-modifying strategies of PEGylated phospholipids, 4F-VBP (HDL) provides a 3.86 higher linkage efficiency to obtain MSCs4F-VBP(HDL) , which can recognize and adhere to the inflammatory endothelium for efficient blood-brain barrier crossing and brain accumulation. In APPswe/PSEN1dE9 mice with Alzheimer's disease (AD), the transcriptomic analysis reveals that systemic administration of MSCs4F-VBP(HDL) can activate pathways associated with neuronal activity and diminish neuroinflammation for rewiring AD brains. This customizable HDL-mediated membrane fusogenicity platform primes MSC inflammatory brain delivery, which can be expanded to other disease treatments by simply fusing 4F with relevant ligands for living cell engineering.

3.
Nano Lett ; 22(6): 2450-2460, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35271279

ABSTRACT

The inflammatory dysfunction of microglia from excess amyloid-ß peptide (Aß) disposal is an overlooked but pathogenic event in Alzheimer's disease (AD). Here, we exploit a native high-density lipoprotein (HDL)-inspired nanoscavenger (pHDL/Cur-siBACE1) that combines the trinity of phosphatidic acid-functionalized HDL (pHDL), curcumin (Cur), and ß-site APP cleavage enzyme 1 targeted siRNA (siBACE1) to modulate microglial dysfunction. By mimicking the natural lipoprotein transport route, pHDL can penetrate the blood-brain barrier and sequentially target Aß plaque, where Aß catabolism is accelerated without microglial dysfunction. The benefit results are from a three-pronged modulation strategy, including promoted Aß clearance with an antibody-like Aß binding affinity, normalized microglial dysfunction by blocking the NF-κB pathway, and reduced Aß production by gene silence (44%). After treatment, the memory deficit and neuroinflammation of APPswe/PSEN 1dE9 mice are reversed. Collectively, this study highlights the double-edged sword role of microglia and provides a promising tactic for modulating microglial dysfunction in AD treatment.


Subject(s)
Alzheimer Disease , Curcumin , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Lipoproteins, HDL/metabolism , Mice , Mice, Transgenic , Microglia/metabolism , Neuroinflammatory Diseases
4.
Adv Sci (Weinh) ; 9(14): e2106072, 2022 05.
Article in English | MEDLINE | ID: mdl-35307993

ABSTRACT

Amyloid-ß (Aß) toxicity is considered to be companioned by Tau phosphorylation in Alzheimer's disease (AD). The clinical AD therapy is usually subjected to low blood-brain barrier (BBB) penetration and complex interaction mechanisms between Aß and phosphorylated Tau. A "Drug-Carrier" synergy therapy is herein designed to simultaneously target Aß and Tau-associated pathways for AD treatment. To imitate natural nanoparticle configuration, the endogenous apolipoprotein A-I and its mimicking peptide 4F fused angiopep-2 (Ang) are sequentially grafted onto lipid nanocomposite (APLN), providing liberty of BBB crossing and microglia targeted Aß clearance. For synergy treatment, methylene blue (MB) is further assembled into APLN (APLN/MB) for Tau aggregation inhibition. After intravenous administration, the optimized density (5 wt%) of Ang ligands dramatically enhances APLN/MB intracerebral shuttling and accumulation, which is 2.15-fold higher than that Ang absent-modification. The site-specific release of MB collaborates APLN to promote Aß capture for microglia endocytosis clearance and reduce p-Tau level by 25.31% in AD pathogenesis. In AD-Aß-Tau bearing mouse models, APLN/MB can relieve AD symptoms, rescue neuron viability and cognitive functions. Collectively, it is confirmed that "Drug-Carrier" synergy therapy of APLN/MB is a promising approach in the development of AD treatments.


Subject(s)
Alzheimer Disease , Nanocomposites , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/therapeutic use , Animals , Biomimetics , Drug Carriers/therapeutic use , Lipids/therapeutic use , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Mice , Phosphorylation , tau Proteins/metabolism , tau Proteins/therapeutic use
5.
J Control Release ; 345: 38-61, 2022 05.
Article in English | MEDLINE | ID: mdl-35257810

ABSTRACT

Current therapeutic strategies for Alzheimer's disease (AD) face the dilemma of no effective drugs that can delay the onset or slow the disease progression. Despite tremendous effort being involved, several anti-AD drugs come into clinical trials but with a moderate-to-poor success rate due to the complex AD pathogenesis and the blood-brain barrier (BBB). Insight into the complex AD pathogenesis is enabling new inspiration that have the potential to help improve our understanding and design of anti-AD nanomedicine. Herein, the complex AD pathogenesis and interaction between different therapeutic targets are summarized and highlighted, and key challenges facing translation of anti-AD nanomedicine from benchtop to bedside are discussed. Following combing through the complex pathogenesis and a contextual overview of clinical status of anti-AD compounds, we discuss the recent advances of exploring versatile nanomaterials in AD treatment from the pathogenesis. The focus here is especially on how to design pathogenesis-inspired nanomaterials for delivering therapeutics cross BBB and modulating the AD pathology by themselves as active ingredients. Collectively, this review highlights the pathogenesis-oriented nanomedicine design and provides with an easily accessible guide to the key opportunities and challenges currently facing the anti-AD nanomedicine.


Subject(s)
Alzheimer Disease , Nanostructures , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Biological Transport , Blood-Brain Barrier/pathology , Humans , Nanomedicine , Nanostructures/therapeutic use
6.
J Control Release ; 338: 56-70, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34391838

ABSTRACT

The inverse correlation between high-density lipoprotein (HDL) levels in vivo and the risk of Alzheimer's disease (AD) has become an inspiration for HDL-inspired AD therapy, including plain HDL and various intelligent HDL-based drug delivery systems. In this review, we will focus on the two endogenous HDL subtypes in the central nervous system (CNS), apolipoprotein E-based HDL (apoE-HDL) and apolipoprotein A-I-based HDL (apoA-I-HDL), especially their influence on AD pathophysiology to reveal HDL's potential as biomarkers for risk prediction, and summarize the relevant therapeutic mechanisms to propose possible treatment strategies. We will emphasize the latest advances of HDL as therapeutics (plain HDL and HDL-based drug delivery systems) to discuss the potential for AD therapy and review innovative techniques in the preparation of HDL-based nanoplatforms to provide a basis for the rational design and future development of anti-AD drugs.


Subject(s)
Alzheimer Disease , Lipoproteins, HDL , Alzheimer Disease/drug therapy , Apolipoprotein A-I , Apolipoproteins E , Biomarkers , Humans
7.
Biomaterials ; 275: 120859, 2021 08.
Article in English | MEDLINE | ID: mdl-34087586

ABSTRACT

Appealing cancer immunotherapy requires synchronous presentation of tumor antigens and immunoadjuvant. Herein, a "one-step" modification strategy is proposed to tinily remould endogenous discoidal high density lipoprotein (dHDL) for tumor-homing and site-specific chemoimmunotherapy. For molecular targeting therapy, lipophilic immunoadjuvant CpG oligodeoxynucleotides is conjugated to facilitate HDL-surface anchoring; and GC nucleotides provide enough reservoir for completion of doxorubicin (Dox) "sandwich". After administration, the tiny size (~30 nm) of disc nanodrug can maneuver deeply into tumors for receptor binding and in situ structural collapse. The intracellular concentrated CpG-Dox induce potent immunogenic cell death from burst Dox liberation at acidic pH. In turn, the released antigens and CpG motifs are simultaneously recognized by dendritic cells for antigen presentation and antitumor T cell responses. Combination chemoimmunotherapy with discoidal nanodrugs performed highest tumor weight inhibitory of 93.2% and extend the median survival time at a safe level. Collectively, this study suggests that the minimalist revolution of natural dHDL particulates may provide a biomimicry nanoplatform for site-specific amplified chemoimmunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Cell Line, Tumor , Doxorubicin/therapeutic use , Humans , Lipoproteins , Neoplasms/drug therapy
8.
Biomaterials ; 273: 120824, 2021 06.
Article in English | MEDLINE | ID: mdl-33894401

ABSTRACT

Sponge particulates have attracted enormous attention in biomedical applications for superior properties, including large porosity, elastic deformation, capillary action, and three-dimensional (3D) reaction environment. Especially, the tiny porous structures make sponge particulates a promising platform for drug delivery, tissue engineering, anti-infection, and wound healing by providing abundant reservoirs of broad surface and internal network for cargo shielding and shuttling. To control the sponge-like morphology and improve the diversity of drug loading, some optimized preparation techniques of sponge particulates have been developed, contributing to the simplified preparation process and improved production reproducibility. Bio-functionalized strategies, including target modification, cell membrane camouflage, and hydrogel of sponge particulates have been applied to modulate the properties, improve the performance, and extend the applications. In this review, we highlight the unique physical properties and functions, current manufacturing techniques, and an overview of spongy particulates in biomedical applications, especially in inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity. Moreover, the current challenges and prospects of sponge particulates are discussed rationally, providing an insight into developing vibrant fields of sponge particulates-based biomedicine.


Subject(s)
COVID-19 , Precision Medicine , Drug Delivery Systems , Humans , Porosity , Reproducibility of Results , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...