Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Nano Lett ; 24(26): 7979-7986, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38829309

ABSTRACT

Magnetic anisotropy in atomically thin correlated heterostructures is essential for exploring quantum magnetic phases for next-generation spintronics. Whereas previous studies have mostly focused on van der Waals systems, here we investigate the impact of dimensionality of epitaxially grown correlated oxides down to the monolayer limit on structural, magnetic, and orbital anisotropies. By designing oxide superlattices with a correlated ferromagnetic SrRuO3 and nonmagnetic SrTiO3 layers, we observed modulated ferromagnetic behavior with the change of the SrRuO3 thickness. Especially, for three-unit-cell-thick layers, we observe a significant 1500% improvement of the coercive field in the anomalous Hall effect, which cannot be solely attributed to the dimensional crossover in ferromagnetism. The atomic-scale heterostructures further reveal the systematic modulation of anisotropy for the lattice structure and orbital hybridization, explaining the enhanced magnetic anisotropy. Our findings provide valuable insights into engineering the anisotropic hybridization of synthetic magnetic crystals, offering a tunable spin order for various applications.

2.
Sci Adv ; 7(17)2021 Apr.
Article in English | MEDLINE | ID: mdl-33883134

ABSTRACT

Polarity discontinuity across LaAlO3/SrTiO3 (LAO/STO) heterostructures induces electronic reconstruction involving the formation of two-dimensional electron gas (2DEG) and structural distortions characterized by antiferrodistortive (AFD) rotation and ferroelectric (FE) distortion. We show that AFD and FE modes are cooperatively coupled in LAO/STO (111) heterostructures; they coexist below the critical thickness (t c) and disappear simultaneously above t c with the formation of 2DEG. Electron energy-loss spectroscopy and density functional theory (DFT) calculations provide direct evidence of oxygen vacancy (V O) formation at the LAO (111) surface, which acts as the source of 2DEG. Tracing the AFD rotation and FE distortion of LAO reveals that their evolution is strongly correlated with V O distribution. The present study demonstrates that AFD and FE modes in oxide heterostructures emerge as a consequence of interplay between misfit strain and polar field, and further that their combination can be tuned to competitive or cooperative coupling by changing the interface orientation.

3.
Adv Mater ; 33(15): e2006601, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33694212

ABSTRACT

Growth of 2D van der Waals layered single-crystal (SC) films is highly desired not only to manifest the intrinsic physical and chemical properties of materials, but also to enable the development of unprecedented devices for industrial applications. While wafer-scale SC hexagonal boron nitride film has been successfully grown, an ideal growth platform for diatomic transition metal dichalcogenide (TMdC) films has not been established to date. Here, the SC growth of TMdC monolayers on a centimeter scale via the atomic sawtooth gold surface as a universal growth template is reported. The atomic tooth-gullet surface is constructed by the one-step solidification of liquid gold, evidenced by transmission electron microscopy. The anisotropic adsorption energy of the TMdC cluster, confirmed by density-functional calculations, prevails at the periodic atomic-step edge to yield unidirectional epitaxial growth of triangular TMdC grains, eventually forming the SC film, regardless of the Miller indices. Growth using the atomic sawtooth gold surface as a universal growth template is demonstrated for several TMdC monolayer films, including WS2 , WSe2 , MoS2 , the MoSe2 /WSe2 heterostructure, and W1- x Mox S2 alloys. This strategy provides a general avenue for the SC growth of diatomic van der Waals heterostructures on a wafer scale, to further facilitate the applications of TMdCs in post-silicon technology.

5.
Adv Sci (Weinh) ; 7(16): 2001643, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32832374

ABSTRACT

Bonding geometry engineering of metal-oxygen octahedra is a facile way of tailoring various functional properties of transition metal oxides. Several approaches, including epitaxial strain, thickness, and stoichiometry control, have been proposed to efficiently tune the rotation and tilt of the octahedra, but these approaches are inevitably accompanied by unnecessary structural modifications such as changes in thin-film lattice parameters. In this study, a method to selectively engineer the octahedral bonding geometries is proposed, while maintaining other parameters that might implicitly influence the functional properties. A concept of octahedral tilt propagation engineering is developed using atomically designed SrRuO3/SrTiO3 (SRO/STO) superlattices. In particular, the propagation of RuO6 octahedral tilt within the SRO layers having identical thicknesses is systematically controlled by varying the thickness of adjacent STO layers. This leads to a substantial modification in the electromagnetic properties of the SRO layer, significantly enhancing the magnetic moment of Ru. This approach provides a method to selectively manipulate the bonding geometry of strongly correlated oxides, thereby enabling a better understanding and greater controllability of their functional properties.

6.
Nat Nanotechnol ; 15(10): 861-867, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32719494

ABSTRACT

Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu-Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH4 concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials.

7.
Sci Adv ; 6(23): eaba7416, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32548272

ABSTRACT

Electrides have emerged as promising materials with exotic properties, such as extraordinary electron-donating ability. However, the inevitable instability of electrides, which is caused by inherent excess electrons, has hampered their widespread applications. We report that a self-passivated dihafnium sulfide electride ([Hf2S]2+∙2e-) by double amorphous layers exhibits a strong oxidation resistance in water and acid solutions, enabling a persistent electrocatalytic hydrogen evolution reaction. The naturally formed amorphous Hf2S layer on the cleaved [Hf2S]2+∙2e- surface reacts with oxygen to form an outermost amorphous HfO2 layer with ~10-nm thickness, passivating the [Hf2S]2+∙2e- electride. The excess electrons in the [Hf2S]2+∙2e- electride are transferred through the thin HfO2 passivation layer to water molecules under applied electric fields, demonstrating the first electrocatalytic reaction with excellent long-term sustainability and no degradation in performance. This self-passivation mechanism in reactive conditions can advance the development of stable electrides for energy-efficient applications.

8.
ACS Nano ; 13(7): 8193-8201, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31260265

ABSTRACT

Vertically stacked two-dimensional van der Waals (vdW) heterostructures, used to obtain homogeneity and band steepness at interfaces, exhibit promising performance for band-to-band tunneling (BTBT) devices. Esaki tunnel diodes based on vdW heterostructures, however, yield poor current density and peak-to-valley ratio, inferior to those of three-dimensional materials. Here, we report the negative differential resistance (NDR) behavior in a WSe2/SnSe2 heterostructure system at room temperature and demonstrate that heterointerface control is one of the keys to achieving high device performance by constructing WSe2/SnSe2 heterostructures in inert gas environments. While devices fabricated in ambient conditions show poor device performance due to the observed oxidation layer at the interface, devices fabricated in inert gas exhibit extremely high peak current density up to 1460 mA/mm2, 3-4 orders of magnitude higher than reported vdW heterostructure-based tunnel diodes, with a peak-to-valley ratio of more than 4 at room temperature. Besides, Pd/WSe2 contact in our device possesses a much higher Schottky barrier than previously reported Cr/WSe2 contact in the WSe2/SnSe2 device, which suppresses the thermionic emission current to less than the BTBT current level, enabling the observation of NDR at room temperature. Diode behavior can be further modulated by controlling the electrostatic doping and the tunneling barrier as well.

9.
Nat Commun ; 10(1): 3161, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320651

ABSTRACT

The large-scale crossbar array is a promising architecture for hardware-amenable energy efficient three-dimensional memory and neuromorphic computing systems. While accessing a memory cell with negligible sneak currents remains a fundamental issue in the crossbar array architecture, up-to-date memory cells for large-scale crossbar arrays suffer from process and device integration (one selector one resistor) or destructive read operation (complementary resistive switching). Here, we introduce a self-selective memory cell based on hexagonal boron nitride and graphene in a vertical heterostructure. Combining non-volatile and volatile memory operations in the two hexagonal boron nitride layers, we demonstrate a self-selectivity of 1010 with an on/off resistance ratio larger than 103. The graphene layer efficiently blocks the diffusion of volatile silver filaments to integrate the volatile and non-volatile kinetics in a novel way. Our self-selective memory minimizes sneak currents on large-scale memory operation, thereby achieving a practical readout margin for terabit-scale and energy-efficient memory integration.

10.
ACS Appl Mater Interfaces ; 11(1): 1579-1586, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30525400

ABSTRACT

Two-dimensional (2D) van der Waals (vdW) heterostructures exhibit novel physical and chemical properties, allowing the development of unprecedented electronic, optical, and electrochemical devices. However, the construction of wafer-scale vdW heterostructures for practical applications is still limited due to the lack of well-established growth and transfer techniques. Herein, we report a method for the fabrication of wafer-scale 2D vdW heterostructures with an ultraclean interface between layers via the aid of a freestanding viscoelastic polymer support layer (VEPSL). The low glass transition temperature ( Tg) and viscoelastic nature of the VEPSL ensure absolute conformal contact between 2D layers, enabling the easy pick-up of layers and attaching to other 2D layers. This eventually leads to the construction of random sequence 2D vdW heterostructures such as molybdenum disulfide/tungsten disulfide/molybdenum diselenide/tungsten diselenide/hexagonal boron nitride. Furthermore, the VEPSL allows the conformal transfer of 2D vdW heterostructures onto arbitrary substrates, irrespective of surface roughness. To demonstrate the significance of the ultraclean interface, the fabricated molybdenum disulfide/graphene heterostructure employed as an electrocatalyst yielded excellent results of 73.1 mV·dec-1 for the Tafel slope and 0.12 kΩ of charge transfer resistance, which are almost twice as low as that of the impurity-trapped heterostructure.

SELECTION OF CITATIONS
SEARCH DETAIL