Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Res ; 2021: 2684361, 2021.
Article in English | MEDLINE | ID: mdl-34926702

ABSTRACT

The dysfunction of regulatory B cells (Breg) may result in immune inflammation such as allergic rhinitis (AR); the underlying mechanism is not fully understood yet. Short-chain fatty acids, such as propionic acid (PA), have immune regulatory functions. This study is aimed at testing a hypothesis that modulates PA production alleviating airway allergy through maintaining Breg functions. B cells were isolated from the blood obtained from AR patients and healthy control (HC) subjects. The stabilization of IL-10 mRNA in B cells was tested with RT-qPCR. An AR mouse model was developed to test the role of PA in stabilizing the IL-10 expression in B cells. We found that the serum PA levels were negatively correlated with the serum Th2 cytokine levels in AR patients. Serum PA levels were positively associated with peripheral CD5+ B cell frequency in AR patients; the CD5+ B cells were also IL-10+. The spontaneous IL-10 mRNA decay was observed in B cells, which was prevented by the presence of PA through activating GPR43. PA counteracted the effects of Tristetraprolin (TTP) on inducing IL-10 mRNA decay in B cells through the AKT/T-bet/granzyme B pathway. Administration of Yupinfeng San, a Chinese traditional medical formula, or indole-3-PA, induced PA production by intestinal bacteria to stabilize the IL-10 expression in B cells, which promoted the allergen specific immunotherapy, and efficiently alleviated experimental AR. In summary, the data show that CD5+ B cells produce IL-10. The serum lower PA levels are associated with the lower frequency of CD5+ B cells in AR patients. Administration with Yupinfeng San or indole-3-PA can improve Breg functions and alleviate experimental AR.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Desensitization, Immunologic , Propionates/metabolism , Rhinitis, Allergic/therapy , Adolescent , Adult , Animals , B-Lymphocytes, Regulatory/metabolism , Case-Control Studies , Cells, Cultured , Disease Models, Animal , Drugs, Chinese Herbal/administration & dosage , Female , Gastrointestinal Microbiome/immunology , Healthy Volunteers , Humans , Indoles/administration & dosage , Interleukin-10/genetics , Interleukin-10/metabolism , Male , Mice , Middle Aged , Primary Cell Culture , Propionates/blood , RNA Stability , Receptors, Cell Surface/metabolism , Rhinitis, Allergic/blood , Rhinitis, Allergic/immunology , Th2 Cells/immunology , Th2 Cells/metabolism , Young Adult
2.
Clin Exp Immunol ; 206(2): 129-140, 2021 11.
Article in English | MEDLINE | ID: mdl-34418066

ABSTRACT

The mechanism of antigen-specific regulatory T cell (Treg ) induction is not yet fully understood. Curcumin has an immune regulatory function. This study aims to induce antigen-specific Tregs by employing extracellular vesicles (EVs) that carry two types of T cell activators. Two types of T cell activators, ovalbumin (OVA)/major histocompatibility complex-II (MHC-II) and tetramethylcurcumin (FLLL31) (a curcumin analog) were carried by dendritic cell-derived extracellular vesicles, designated OFexo. A murine model of allergic rhinitis (AR) was developed with OVA as the specific antigen. AR mice were treated with a nasal instillation containing OFexo. We observed that OFexo recognized antigen-specific T cell receptors (TCR) on CD4+ T cells and enhanced Il10 gene transcription in CD4+ T cells. Administration of the OFexo-containing nasal instillation induced antigen-specific type 1 Tregs (Tr1 cells) in the mouse airway tissues. OFexo-induced Tr1 cells showed immune suppressive functions on CD4+ T cell proliferation. Administration of OFexo efficiently alleviated experimental AR in mice. In conclusion, OFexo can induce antigen-specific Tr1 cells that can efficiently alleviate experimental AR. The results suggest that OFexo has the translational potential to be employed for the treatment of AR or other allergic disorders.


Subject(s)
Antigens/immunology , Extracellular Vesicles/immunology , Lymphocyte Activation , Rhinitis, Allergic/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Disease Models, Animal , Mice
3.
Mol Immunol ; 129: 103-111, 2021 01.
Article in English | MEDLINE | ID: mdl-33229073

ABSTRACT

Polymorphonuclear neutrophils (PMN) are one fraction of the major inflammatory cells in allergic asthma (asthma, in short); the role of PMN in the asthma pathogenesis is not fully understood yet. This study aims to investigate the effects of specific Ag-guiding exosomes on suppressing the neutrophil-dominant airway inflammation. In this study, BALB/c mice were immunized with ovalbumin plus complete Freund adjuvant to induce an asthma model featured with neutrophil-dominant lung inflammation. The Ag specific PMN (sPMN)-targeting exosomes (tExo), that were exosomes carrying a complex of specific Ag/anti-CD64 Ab and Fas ligand, were constructed to be used to alleviate neutrophilic asthma in mice. We found that sPMNs were the major cellular component in bronchoalveolar lavage fluid (BALF) in asthma mice, while less than 3% PMNs in naive control mice. The sPMNs expressed higher levels of CD64, which formed complexes with Ag-specific IgG (sIgG). The sIgG/CD64 complex-carrying PMNs could be activated upon exposing to specific Ags. Exposure to tExos induced Ag-specific PMNs apoptosis. Administration of tExos efficiently suppressed experimental asthma. We conclude that a fraction of sPMN was identified in the airway of asthma mice. The sPMNs could be activated upon exposure to specific Ags. tExos could induce sPMNs apoptosis, that show the translational potential in the treatment of asthma.


Subject(s)
Antigens/immunology , Asthma/immunology , Drug Carriers/administration & dosage , Hypersensitivity/immunology , Nanoparticles/administration & dosage , Neutrophils/immunology , Vaccines/immunology , Animals , Antibodies/immunology , Apoptosis/immunology , Bronchoalveolar Lavage Fluid/immunology , Exosomes/immunology , Freund's Adjuvant/immunology , Immunoglobulin G/immunology , Lung/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Pneumonia/immunology , Receptors, IgG/immunology
4.
Am J Rhinol Allergy ; 35(1): 86-97, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32586101

ABSTRACT

BACKGROUND: The eosinophil (Eo) activation is a crucial factor evoking allergic rhinitis (AR) attacks; factors; the mechanism of triggering Eo activation remains to be further investigated. The interaction of antigen (Ag) and antibody plays a critical role in evoking allergy attacks. This study aims to elucidate the role of FcγRI, the high affinity receptor of IgG, in the Ag-mediated Eo activation. METHODS: Nasal lavage fluids (NLF) were collected from AR patients and healthy control (HC) subjects. Eos were isolated by flow cytometry cell sorting and analyzed by pertinent immunological approaches. RESULTS: Eos composed more than 60% of the cellular components in AR NLF. Exposure to specific Ags (sAgs) in the culture triggered Eos to release inflammatory mediators. High levels of FcγRI were detected on the surface of AR NLF Eos. Exposure to lipopolysaccharide markedly increased the FcγRI expression in naive Eos, which could be bound by Ag-specific IgG (sIgG) to form complexes on the surface of Eos; this made Eos at the sensitized status. Eos bore with the sIgG/FcγRI complexes could be activated upon exposure to sIgG in the culture; these Eos can be designated as Ag-specific Eos. Passive transfer of Ag-specific Eos resulted in profound AR response in mice upon sAg challenge. Depletion of FcγRI on Eos efficiently abolished AR response in mice. CONCLUSIONS: AR Eos express high levels FcγRI, that can be bound by sIgG to make Eos sensitized. Re-exposure to specific Ags can activate the sensitized Eos.


Subject(s)
Eosinophils , Rhinitis, Allergic , Animals , Humans , Inflammation Mediators , Mice , Nasal Lavage Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...