Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(5): e0154023, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37737639

ABSTRACT

IMPORTANCE: Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is a microbial energy-conserving process that reduces NO3 - and/or NO2 - to NH4 +. Interestingly, DNRA-catalyzing microorganisms possessing nrfA genes are occasionally found harboring nosZ genes encoding nitrous oxide reductases, i.e., the only group of enzymes capable of removing the potent greenhouse gas N2O. Here, through a series of physiological experiments examining DNRA metabolism in one of such microorganisms, Bacillus sp. DNRA2, we have discovered that N2O may delay the transition to DNRA upon an oxic-to-anoxic transition, unless timely removed by the nitrous oxide reductases. These observations suggest a novel explanation as to why some nrfA-possessing microorganisms have retained nosZ genes: to remove N2O that may otherwise interfere with the transition from O2 respiration to DNRA.


Subject(s)
Ammonium Compounds , Nitrites , Nitrites/metabolism , Ammonium Compounds/metabolism , Nitrates/metabolism , Nitrous Oxide/metabolism , Oxidoreductases/metabolism , Denitrification
2.
Environ Sci Technol ; 57(9): 3883-3892, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36809918

ABSTRACT

Wastewater treatment plants (WWTPs) are a major source of N2O, a potent greenhouse gas with 300 times higher global warming potential than CO2. Several approaches have been proposed for mitigation of N2O emissions from WWTPs and have shown promising yet only site-specific results. Here, self-sustaining biotrickling filtration, an end-of-the-pipe treatment technology, was tested in situ at a full-scale WWTP under realistic operational conditions. Temporally varying untreated wastewater was used as trickling medium, and no temperature control was applied. The off-gas from the covered WWTP aerated section was conveyed through the pilot-scale reactor, and an average removal efficiency of 57.9 ± 29.1% was achieved during 165 days of operation despite the generally low and largely fluctuating influent N2O concentrations (ranging between 4.8 and 96.4 ppmv). For the following 60-day period, the continuously operated reactor system removed 43.0 ± 21.2% of the periodically augmented N2O, exhibiting elimination capacities as high as 5.25 g N2O m-3·h-1. Additionally, the bench-scale experiments performed abreast corroborated the resilience of the system to short-term N2O starvations. Our results corroborate the feasibility of biotrickling filtration for mitigating N2O emitted from WWTPs and demonstrate its robustness toward suboptimal field operating conditions and N2O starvation, as also supported by analyses of the microbial compositions and nosZ gene profiles.


Subject(s)
Wastewater , Water Purification , Nitrous Oxide/analysis , Bioreactors , Filtration , Sewage
3.
ISME J ; 16(9): 2087-2098, 2022 09.
Article in English | MEDLINE | ID: mdl-35676322

ABSTRACT

Microorganisms possessing N2O reductases (NosZ) are the only known environmental sink of N2O. While oxygen inhibition of NosZ activity is widely known, environments where N2O reduction occurs are often not devoid of O2. However, little is known regarding N2O reduction in microoxic systems. Here, 1.6-L chemostat cultures inoculated with activated sludge samples were sustained for ca. 100 days with low concentration (<2 ppmv) and feed rate (<1.44 µmoles h-1) of N2O, and the resulting microbial consortia were analyzed via quantitative PCR (qPCR) and metagenomic/metatranscriptomic analyses. Unintended but quantified intrusion of O2 sustained dissolved oxygen concentration above 4 µM; however, complete N2O reduction of influent N2O persisted throughout incubation. Metagenomic investigations indicated that the microbiomes were dominated by an uncultured taxon affiliated to Burkholderiales, and, along with the qPCR results, suggested coexistence of clade I and II N2O reducers. Contrastingly, metatranscriptomic nosZ pools were dominated by the Dechloromonas-like nosZ subclade, suggesting the importance of the microorganisms possessing this nosZ subclade in reduction of trace N2O. Further, co-expression of nosZ and ccoNO/cydAB genes found in the metagenome-assembled genomes representing these putative N2O-reducers implies a survival strategy to maximize utilization of scarcely available electron acceptors in microoxic environmental niches.


Subject(s)
Burkholderiales , Nitrous Oxide , Burkholderiales/genetics , Denitrification , Metagenome , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxygen
4.
Korean J Intern Med ; 36(2): 401-412, 2021 03.
Article in English | MEDLINE | ID: mdl-32811132

ABSTRACT

BACKGROUND/AIMS: Understanding leukemic stem cell (LSC) is important for acute myeloid leukemia (AML) treatment. However, association of LSC with patient prognosis and genetic information in AML patients is unclear. METHODS: Here we investigated the associations between genetic information and the various LSC phenotypes, namely multipotent progenitor (MPP)-like, lymphoid primed multipotent progenitor (LMPP)-like and granulocyte-macrophage progenitors (GMP)-like LSC in 52 AML patients. RESULTS: In secondary AML patients, MPP-like LSC was significantly higher than de novo AML (p = 0.0037). The proportion of MPP-like LSC was especially high in post-myeloproliferative neoplasm AML (p = 0.0485). There was no correlation between age and LSC phenotype. Mutations of KRAS and NRAS were observed in MPP-like LSC dominant patients, TP53 and ASXL1 mutations in LMPP-like LSC dominant patients, and CEBPA, DNMT3A and IDH1 mutations in GMP-like LSC dominant patients. Furthermore, KRAS mutation was significantly associated with MPP-like LSC expression (p = 0.0540), and TP53 mutation with LMPP-like LSC expression (p = 0.0276). When the patients were separated according to the combined risk including next generation sequencing data, the poorer the prognosis, the higher the LMPP-like LSC expression (p = 0.0052). This suggests that the dominant phenotype of LSC is one of the important factors in predicting the prognosis and treatment of AML. CONCLUSION: LSC phenotype in AML is closely associated with the recurrent mutations which has prognostic implication. Further research to confirm the meaning of LSC phenotype in the context of genetic aberration is warranted.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Phenotype , Prognosis , Stem Cells
5.
Water Res ; 184: 116144, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32731040

ABSTRACT

Wastewater treatment plants (WWTPs) have long been recognized as point sources of N2O, a potent greenhouse gas and ozone-depleting agent. Multiple mechanisms, both biotic and abiotic, have been suggested to be responsible for N2O production from WWTPs, with basis on extrapolation from laboratory results and statistical analyses of metadata collected from operational full-scale plants. In this study, random forest (RF) analysis, a machine-learning approach for feature selection from highly multivariate datasets, was adopted to investigate N2O production mechanism in activated sludge tanks of WWTPs from a novel perspective. Standardized measurements of N2O effluxes coupled with exhaustive metadata collection were performed at activated sludge tanks of three biological nitrogen removal WWTPs at different times of the year. The multivariate datasets were used as inputs for RF analyses. Computation of the permutation variable importance measures returned biomass-normalized dissolved inorganic carbon concentration (DIC·VSS-1) and specific ammonia oxidation activity (sOURAOB) as the most influential parameters determining N2O emissions from the aerated zones (or phases) of activated sludge bioreactors. For the anoxic tanks, dissolved-organic-carbon-to-NO2-/NO3- ratio (DOC·(NO2--N + NO3--N)-1) was singled out as the most influential. These data analysis results clearly indicate disparate mechanisms for N2O generation in the oxic and anoxic activated sludge bioreactors, and provide evidences against significant contributions of N2O carryover across different zones or phases or niche-specific microbial reactions, with aerobic NH3/NH4+ oxidation to NO2- and anoxic denitrification predominantly responsible from aerated and anoxic zones or phases of activated sludge bioreactors, respectively.


Subject(s)
Denitrification , Nitrogen , Bioreactors , Nitrification , Nitrous Oxide/analysis , Sewage
6.
Leuk Lymphoma ; 61(8): 1932-1942, 2020 08.
Article in English | MEDLINE | ID: mdl-32374198

ABSTRACT

Leukemic stem cells (LSCs) are a major cause of treatment failure and recurrence of acute myeloid leukemia (AML). Targeting LSC is essential to developing a potential cure for patients with relapsed/refractory AML. Here we investigated the effect of aryl hydrocarbon receptor (AhR) signaling on AML stem/progenitor proportion and examined the combined effect of AhR agonist and tyrosine kinase inhibitor. The AhR agonist, 6-formylindolo[3,2-b]carbazole (FICZ), significantly decreased the LSC proportion and clonogenicity and increased differentiation markers in AML primary cells. Synergistic/additive effects of FICZ and gilteritinib, FMS-like tyrosine kinase 3 (FLT3) inhibitor, were confirmed in AML cells with FLT3-ITD. We present evidence that combination of both agents inhibits FLT3 downstream molecules and degrades clonogenicity. Collectively, our results suggest that FICZ not only compels LSC differentiation, but also enhances the efficacy of gilteritinib when combined. Clinical application of this combined approach may pave a new therapeutic strategy for patients with FLT3 mutated AML.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Aniline Compounds , Cell Differentiation , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Pyrazines , Receptors, Aryl Hydrocarbon/genetics , fms-Like Tyrosine Kinase 3/genetics
7.
Br J Cancer ; 122(10): 1445-1452, 2020 05.
Article in English | MEDLINE | ID: mdl-32203209

ABSTRACT

BACKGROUND: Vitamin C suppresses leukaemogenesis by modulating Tet methylcytosine dioxygenase (TET) activity. However, its beneficial effect in the treatment of patients with acute myeloid leukaemia (AML) remains controversial. In this study, we aimed to identify a potential predictive biomarker for vitamin C treatment in AML. METHODS: Gene expression patterns and their relevance to the survival of AML patients were analysed with The Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database cases. In vitro experiments were performed on AML cell lines, a SLC2A3-knockdown cell line and patient-derived primary AML cells. RESULTS: SLC2A3 expression was significantly decreased in leukaemic blast cells. Below-median SLC2A3 expression was associated with poor overall survival. Low SLC2A3 expression was associated with less effective demethylation, and a diminished vitamin C effect in the AML and lymphoma cell lines. SLC2A3 knockdown in the KG-1 cell line decreased the response of vitamin C. In patient-derived primary AML cells, vitamin C only restored TET2 activity when SLC2A3 was expressed. CONCLUSION: SLC2A3 could be used as a potential biomarker to predict the effect of vitamin C treatment in AML.


Subject(s)
Ascorbic Acid/metabolism , DNA-Binding Proteins/genetics , Glucose Transporter Type 3/genetics , Leukemia, Myeloid, Acute/genetics , Proto-Oncogene Proteins/genetics , Ascorbic Acid/genetics , Biomarkers, Tumor/genetics , Dioxygenases , Disease Progression , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Microarray Analysis , Progression-Free Survival
8.
Front Microbiol ; 10: 1203, 2019.
Article in English | MEDLINE | ID: mdl-31275250

ABSTRACT

Salinity and pH have direct and indirect impacts on the growth and metabolic activities of microorganisms. In this study, the effects of salt and alkaline stresses on the kinetic balance between nitrous oxide (N2O) production and consumption in the denitrification pathway of Dechloromonas aromatica strain RCB were examined. N2O accumulated transiently only in insignificant amounts at low salinity (≤0.5% NaCl) and circumneutral pH (7.0 and 7.5). As compared to these control conditions, incubation at 0.7% salinity resulted in substantially longer lag phase and slower growth rate, along with the increase in the amounts of transiently accumulated N2O (15.8 ± 2.8 µmoles N2O-N/vessel). Incubation at pH 8.0 severely inhibited growth and resulted in permanent accumulation of 29.9 ± 1.3 µmoles N2O-N/vessel from reduction of 151 ± 20 µmoles NO3 -/vessel. Monitoring of temporal changes in nirS 1, nirS 2, and nosZ transcription suggested that the nosZ/(nirS 1+nirS 2) ratios were indicative of whether N2O was produced or consumed at the time points where measurements were taken. The salt and alkaline stresses altered the N2O consumption kinetics of the resting D. aromatica cells with expressed nitrous oxide reductases. The N2O consumption rates of the cells subjected to the salt and alkaline stress conditions were significantly reduced from 0.84 ± 0.007 µmoles min-1 mg protein-1 of the control to 0.27 ± 0.02 µmoles min-1 mg protein-1 and 0.31 ± 0.03 µmoles min-1 mg protein-1, respectively, when the initial dissolved N2O concentration was 0.1 mM. As the rates of N2O production from NO2 - reduction was not significantly affected by the stresses (0.45-0.55 µmoles min-1 mg protein-1), the N2O consumption rate was lower than the N2O production rate at the stress conditions, but not at the control condition. These results clearly indicate that the altered kinetics of expressed nitrous oxide reductase and the resultant disruption of kinetic balance between N2O production and consumption was another cause of enhanced N2O emission observed under the salt and alkaline stress conditions. These findings suggest that canonical denitrifiers may become a significant N2O source when faced with abrupt environmental changes.

9.
Leuk Lymphoma ; 60(10): 2532-2540, 2019 10.
Article in English | MEDLINE | ID: mdl-30947576

ABSTRACT

This study was conducted to define the synergistic effect of the PI3K inhibitor BKM120 with the pan-Aurora kinase inhibitor danusertib and the potential mechanism of resistance to the combined inhibitor treatment in Burkitt lymphoma cell lines. The combination of danusertib and BKM120 showed a synergistic effect on Namalwa cells but not on BJAB cells. The combined treatment led to ERK hyperactivation and induced IL-6 secretion in BJAB cells but not in Namalwa cells. A blockade of ERK signaling with trametinib suppressed the combination treatment-induced ERK activation, reduced IL-6 mRNA expression, and downregulated IL-6R mRNA expression, resulting in an improvement in the antitumor effect. We stepwise treated Namalwa cells with both inhibitors using on-and-off treatment cycles and found that Namalwa cells gained chemoresistance by activating the ERK/IL-6 feedback loop, suggesting that the ERK-dependent IL-6 positive feedback loop can compensate for AKT inactivation and is closely associated with adaptive resistance and relapse.


Subject(s)
Aminopyridines/pharmacology , Benzamides/pharmacology , Burkitt Lymphoma/metabolism , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-6/metabolism , Morpholines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Aminopyridines/therapeutic use , Benzamides/therapeutic use , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/pathology , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Humans , Morpholines/therapeutic use , Pyrazoles/therapeutic use , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...