Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(39): 10402-10410, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28885030

ABSTRACT

Adsorbed proteins and their conformational change on blood-contacting biomaterials will determine their final hemocompatibility. It has frequently been reported that surface chirality of biomaterials may highly influence their protein adsorption behavior. Here, lysine and tartaric acid with different chirality were immobilized onto TiO2 films respectively, and the influence of surface chirality on protein adsorption, platelet adhesion, and activation was also investigated. It showed that the l- and d-molecule grafted samples had almost the same grafting density, surface topography, chemical components, and hydrophilicity in this study. However, biological behaviors such as protein adsorption, platelet adhesion, and activation were quite different. The d-lysine grafted surface had a greater ability to inhibit both bovine serum albumin and fibrinogen adsorption, along with less degeneration of fibrinogen compared to the l-lysine anchored surface. However, the d-tartaric acid grafted surface adsorbed more protein but with less denatured fibrinogen compared to the l-tartaric acid grafted one. Further studies showed that the secondary structural change of the adsorbed albumin and fibrinogen on all surfaces with deduction of the α-helix content and increase of disordered structure, while the changing degree was apparently varied. As a result, the d-lysine immobilized surface absorbed less platelets and red blood cells and achieved slightly increased platelet activation. For tartaric acid anchored surfaces, a larger number of platelets adhered to the D-surface but were less activated compared to the L-surface. In conclusion, the surface chirality significantly influenced the adsorption and conformational change of blood plasma protein, which in turn influenced both platelet adhesion and activation.


Subject(s)
Platelet Adhesiveness , Adsorption , Biocompatible Materials , Blood Platelets , Fibrinogen , Platelet Activation , Surface Properties
2.
Colloids Surf B Biointerfaces ; 145: 122-129, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27153116

ABSTRACT

As nitric oxide (NO) plays vital roles in the cardiovascular system, incorporating this molecule into cardiovascular stents is considered as an effective method. In the present study, selenocystine with different chirality (i.e., l- and d-selenocystine) was used as the catalytic molecule immobilized on TiO2 films for decomposing endogenous NO donor. The influences of surface chirality on NO release and platelet behavior were evaluated. Results show that although the amount of immobilized l-selenocystine on the surface was nearly the same as that of immobilized d-selenocystine, in vitro catalytic NO release tests showed that l-selenocystine immobilized surfaces were more capable of catalyzing the decomposition of S-nitrosoglutathione and thus generating more NO. Accordingly, l-selenocystine immobilized surfaces demonstrated significantly increased inhibiting effects on the platelet adhesion and activation, when compared to d-selenocystine immobilized ones. Measurement of the cGMP concentration of platelets further confirmed that surface chirality played an important role in regulating NO generation and platelet behaviors. Additionally, using bovine serum albumin and fibrinogen as model proteins, the protein adsorption determined with quartz crystal microbalance showed that the l-selenocystine immobilized surface enhanced protein adsorption. In conclusion, surface chirality significantly influences protein adsorption and NO release, which may have significant implications in the design of NO-generating cardiovascular stents.


Subject(s)
Blood Platelets/drug effects , Cystine/analogs & derivatives , Nitric Oxide/metabolism , Organoselenium Compounds/chemistry , Titanium/chemistry , A549 Cells , Animals , Catalysis , Cattle , Cystine/chemistry , Fibrinogen/chemistry , Platelet Activation , Serum Albumin, Bovine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...