Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 19(1): 83, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602284

ABSTRACT

The skin is made up of a plethora of cells arranged in multiple layers with complex and intricate vascular networks, creating a dynamic microenvironment of cells-to-matrix interactions. With limited donor sites, engineered skin substitute has been in high demand for many therapeutic purposes. Over the years, remarkable progress has occurred in the skin tissue-engineering field to develop skin grafts highly similar to native tissue. However, the major hurdle to successful engraftment is the incorporation of functional vasculature to provide essential nutrients and oxygen supply to the embedded cells. Limitations of traditional tissue engineering have driven the rapid development of vascularized skin tissue production, leading to new technologies such as 3D bioprinting, nano-fabrication and micro-patterning using hydrogel based-scaffold. In particular, the key hope to bioprinting would be the generation of interconnected functional vessels, coupled with the addition of specific cell types to mimic the biological and architectural complexity of the native skin environment. Additionally, stem cells have been gaining interest due to their highly regenerative potential and participation in wound healing. This review briefly summarizes the current cell therapies used in skin regeneration with a focus on the importance of vascularization and recent progress in 3D fabrication approaches to generate vascularized network in the skin tissue graft.


Subject(s)
Bioprinting , Cell- and Tissue-Based Therapy , Regeneration , Skin , Tissue Engineering , Tissue Scaffolds , Wound Healing
2.
J Mol Med (Berl) ; 98(5): 615-632, 2020 05.
Article in English | MEDLINE | ID: mdl-32198625

ABSTRACT

The rapid advancement of genome editing technologies has opened up new possibilities in the field of medicine. Nuclease-based techniques such as the CRISPR/Cas9 system are now used to target genetically linked disorders that were previously hard-to-treat. The CRISPR/Cas9 gene editing approach wields several advantages over its contemporary editing systems, notably in the ease of component design, implementation and the option of multiplex genome editing. While results from the early phase clinical trials have been encouraging, the small patient population recruited into these trials hinders a conclusive assessment on the safety aspects of the CRISPR/Cas9 therapy. Potential safety concerns include the lack of fidelity in the CRISPR/Cas9 system which may lead to unintended DNA modifications at non-targeted gene loci. This review focuses modifications to the CRISPR/Cas9 components that can mitigate off-target effects in in vitro and preclinical models and its translatability to gene therapy in patient populations.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Therapy , Animals , DNA Repair , Disease Management , Gene Expression Regulation , Gene Targeting , Genetic Predisposition to Disease , Genetic Therapy/methods , Humans , MicroRNAs/genetics , Models, Animal , Organ Specificity/genetics , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida
SELECTION OF CITATIONS
SEARCH DETAIL
...