Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5851, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195619

ABSTRACT

TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.


Subject(s)
Peptides , Phosphatidylserines , ATP-Binding Cassette Transporters/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Lysosomes/metabolism , Mice , Peptides/chemistry , Phosphatidylserines/metabolism
2.
ChemSusChem ; 13(3): 539-547, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31793240

ABSTRACT

Converting CO2 into useful chemicals through an electrocatalytic process is an attractive solution to reduce CO2 in the atmosphere. However, the process suffers from high overpotential, low activity, or poor product selectivity. In this study, N,S dual-doped carbon nanoweb (NSCNW) materials were proposed as an efficient nonmetallic electrocatalyst for CO2 reduction. The NSCNW catalysts preferentially and rapidly converted CO2 into CO with a high Faradaic efficiency of 93.4 % and a partial current density of -5.93 mA cm-2 at a low overpotential of 490 mV. A small Tafel slope value (93 mV dec-1 ) was obtained, demonstrating a high rate for CO2 reduction. Moreover, the catalysts also exhibited a quite stable current-density profile during 20 h with a high CO Faradaic efficiency above 90 % throughout the electrolysis reaction. The high catalytic performance of the catalysts for CO2 reduction could be attributed to synergistic effects associated with the structural advantages of 3 D carbon nanoweb structures and effective S doping of the carbon materials with the highest ratio of thiophene-like S to oxidized S species.

3.
Nanoscale ; 11(5): 2423-2433, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30667024

ABSTRACT

Metal-free catalysts have gained substantial attention as a promising candidate to replace the expensive platinum (Pt) catalysts for the oxygen reduction reaction (ORR) which is a key process in low temperature fuel cells. Development of highly efficient and mass-producible N-doped carbon catalysts, however, remains to be a great challenge. In this study, N-doped porous carbon (NPC) materials were synthesized via a simple, cost-effective and scalable method for mass production by using the d-gluconic acid sodium salt, pyrrole, Triton X-100 and KOH. The resulting NPC possessed a multidirectional porous carbon network (SBET: 1026.6 m2 g-1, Vt: 1.046 cm3 g-1) with hierarchical porosity and plenty of graphitic N species (49.1%). Electrochemical tests showed that the NPC itself was highly active for the ORR under alkaline and acidic conditions via a four electron pathway for the complete reduction of O2 in water. More importantly, this NPC catalyst demonstrated better performance than commercial Pt/C catalysts in terms of long-term durability and methanol tolerance under both conditions.

4.
ChemSusChem ; 12(4): 824-829, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30569512

ABSTRACT

Current lithium-ion batteries have a low theoretical capacity that is insufficient for use in emerging electric vehicles and energy-storage systems. The development of lithium-sulfur batteries utilizing Li2 S cathodes would be a promising option to overcome the capacity limitation. In this work, new three-dimensional (3D) honeycomb-like N-doped carbon nanowebs (HCNs) have been synthesized through a facile aqueous solution route for use as a cathode material in lithium-sulfur batteries. The Li2 S@HCNs cathode delivers a high discharge capacity of approximately 815 mAh g-1 after 65 cycles at 0.1 C, along with a superior rate capacity of approximately 568 mAh g-1 even at 2 C. The outstanding electrochemical rate performance is ascribed to their unique 3D honeycomb-like nanoweb structure, consisting of nanowires derived from polypyrrole. These properties greatly enhance the electrochemical reaction kinetics by providing efficient electron pathways and hollow channels for electrolyte transport. Nitrogen doping in the carbon nanowebs also considerably improves the chemisorption properties by tuning affinity between sulfur and oxygen functional groups on the carbon framework. The simple synthesis strategy and the resulting unique electrode structure could present a new avenue in nanostructure research for high-performance lithium-sulfur batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...