Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 88(6): 1345-1357, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37768740

ABSTRACT

Urban waterlogging and the deterioration of receiving water quality caused by stormwater runoff have become increasingly significant problems. Based on the concept of combining grey and green infrastructure, a combined permeable concrete pavement (PCP) and constructed wetland (CW) system has been developed to treat stormwater runoff and enable on-site reuse. The results showed that the removal rate of suspended solids (SS) by PCP ranged from 96.61 to 99.20%; however, the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in the effluent did not meet the standards required for rainwater reuse. For the combined PCP-CW system, the removal rates of COD, TN and TP by the CW were 48.45-75.12%, 47.26-53.05%, and 59.04-75.28%, respectively, under different hydraulic loading (HL) rates; thus, the effluent TN concentrations did not consistently meet the reuse standards. Further optimization of aeration in different parts of the CW revealed that aeration in the middle and front sections of the wetland had the most significant effect on pollutant removal, under which the TN concentrations in the effluent met the standard required for reuse. The effluent from the combined PCP-CW system was able to fully meet the stormwater reuse standards under these optimized conditions, and the reuse of urban stormwater runoff can therefore be realized.


Subject(s)
Environmental Pollutants , Wetlands , Nitrogen , Phosphorus , Water Quality
2.
Environ Sci Pollut Res Int ; 30(23): 63620-63630, 2023 May.
Article in English | MEDLINE | ID: mdl-37052840

ABSTRACT

Constructed wetland-microbial fuel cell (CW-MFC) has attracted much attention because of its dual functions of wastewater treatment and energy recovery. However, its performance in treating high-concentration wastewater is degraded by the decreased dissolved oxygen at the cathode and insufficient electron acceptors. In this study, two CW-MFC systems with cathodic aeration were connected in series to investigate the effects of aeration rate and hydraulic retention time (HRT) on the removal of pollutants and the performance of electricity production in high-concentration wastewater. Results showed that aeration enhanced NH4+-N and TP removal by 45.0-49.8% and 11.5-18.0%, compared with the unaerated condition, respectively. Meanwhile, no significant change regarding COD removal was observed. Aeration enhances the output voltage and power density of the system, especially the first stage CW-MFC, which improved the power production performance by 1 to 2 orders-of-magnitude. Increasing HRT improves the system's pollutant treatment efficiency and power generation performance for high-concentration wastewater. Still, the extension of HRT to 2 days will not contribute much to improving the removal efficiency. Under optimized conditions, the maximum total removal rates of COD, NH4+-N, and TP for the two-stage tandem CW-MFC system were 99.3 ± 0.2%, 92.4 ± 1.6%, and 79.5 ± 3.4%, respectively. Meanwhile, the maximum output voltage and maximum power density of the first-stage CW-MFC were 405 mV and 138.0 mW/m3, respectively. In contrast, the maximum output voltage and maximum power density of the second stage are 105 mV and 14.7 mW/m3, respectively.


Subject(s)
Bioelectric Energy Sources , Wastewater , Wetlands , Electricity , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...