Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(30): eadh0549, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37494433

ABSTRACT

Coal has long fueled human civilizations. The history of systematic coal fuel exploitation has been traced back to the late third millennium before present (post-2500 B.P.). Although sporadic combustion of coal for fuel was reported in some prehistoric archaeological sites, evidence for the systematic exploitation of coal for fuel before 2500 B.P. remains lacking. Here, we report comprehensive understanding for the earliest systematic exploitation of coal for fuel at the Jirentaigoukou site in Xinjiang, northwestern China, at ~3600 B.P. The main body of the site witnessed systematic exploitation of bituminous coals, illustrating a complete chaîne opératoire with selective mining, planned storage, and extensive combustion. Our results transform the knowledge of energy history by extending the upper limit of the systematic exploitation of coal for fuel by approximately a millennium, and provide a precedent of energy transition under intense conflict between social demand and environmental deterioration.

2.
Front Cell Infect Microbiol ; 11: 727665, 2021.
Article in English | MEDLINE | ID: mdl-34604111

ABSTRACT

Microsporum canis, a common pathogenic skin fungus, can cause dermatophytosis in humans and animals. Zinc is an important trace element and plays an important role in the growth and metabolism of fungi. Currently, the effects of zinc deficiency on growth, gene expression, and metabolic pathway have not been clarified in M. canis. Therefore, M. canis was cultured under zinc restriction, and RNA-Seq was conducted in this study. The growth of M. canis was severely inhibited, and many genes showed significant upregulation and downregulation in M. canis with zinc deficiency. Zinc deficiency could negatively affect the gene expression and biological metabolic pathway in M. canis. The zinc-responsiveness transcriptional activator (ZafA) gene was significantly upregulated and shared homology with Zap1. Thus, the ZafA gene might be the main transcription factor regulating M. canis zinc homeostasis. The ZafA gene knockout strain, ZafA-hph, was constructed via Agrobacterium tumefaciens-mediated transformation (ATMT) in M. canis for the first time to assess its function. In vitro growth ability, hair biodegradation ability, virulence test, and zinc absorption capacity in ZafA-hph and wild-type M. canis strains were compared. Results showed that the ZafA gene plays an important role in zinc absorption, expression of zinc transporter genes, and growth and pathogenicity in M. canis and can be used as a new drug target. Cutting off the zinc absorption pathway can be used as a way to prevent and control infection in M. canis.


Subject(s)
Microsporum , Zinc , Animals , Humans , Microsporum/genetics , RNA-Seq , Virulence
3.
ACS Appl Mater Interfaces ; 12(40): 44433-44446, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32914960

ABSTRACT

A two-step electrochemical surface treatment has been developed to modify the CP Ti surface on commercially pure titanium grade 2 (CP Ti): (1) anodic oxidation to form TiO2 nanotube precoatings loaded with silver (Ag) and (2) microarc oxidation (MAO) to produce a porous Ca-P-Ag coating in an electrolyte containing Ag, Ca, and P. One-step MAO in the same electrolyte has also been used to produce porous Ca-P-Ag coatings without anodic oxidation and preloaded Ag as a control. Surface morphologies and alloying chemistry of the two coatings were characterized by SEM, EDS, and XPS. Biocompatibility and antimicrobial properties have been evaluated by the MTT method and co-culture of Staphylococcus aureus, respectively. It is demonstrated that porous coatings with high Ag content can be achieved on the CP Ti by the two-step treatment. The optimized MAO voltage for excellent comprehensive properties of the coating is 350 V, in which a suitable chemical equilibrium between Ag, Ca, and P contents and a Ca/P ratio of 1.67 similar to HA can be obtained, and the Ag particles are in the size of less than 100 nm and embedded into the underneath of the coating surface. After being contacted with S. aureus for 1 and 7 days, the average bactericidal rates were 99.53 and 89.27% and no cytotoxicity was detected. In comparison, the one-step MAO coatings contained less Ag, had a lower Ca/P ratio, and showed lower antimicrobial ability than the two-step treated samples.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Electrochemical Techniques , Staphylococcus aureus/drug effects , Titanium/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Microbial Sensitivity Tests , Particle Size , Porosity , Silver/chemistry , Silver/pharmacology , Surface Properties , Titanium/chemistry
4.
Cancers (Basel) ; 12(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150991

ABSTRACT

Deep learning has been applied to many areas in health care, including imaging diagnosis, digital pathology, prediction of hospital admission, drug design, classification of cancer and stromal cells, doctor assistance, etc. Cancer prognosis is to estimate the fate of cancer, probabilities of cancer recurrence and progression, and to provide survival estimation to the patients. The accuracy of cancer prognosis prediction will greatly benefit clinical management of cancer patients. The improvement of biomedical translational research and the application of advanced statistical analysis and machine learning methods are the driving forces to improve cancer prognosis prediction. Recent years, there is a significant increase of computational power and rapid advancement in the technology of artificial intelligence, particularly in deep learning. In addition, the cost reduction in large scale next-generation sequencing, and the availability of such data through open source databases (e.g., TCGA and GEO databases) offer us opportunities to possibly build more powerful and accurate models to predict cancer prognosis more accurately. In this review, we reviewed the most recent published works that used deep learning to build models for cancer prognosis prediction. Deep learning has been suggested to be a more generic model, requires less data engineering, and achieves more accurate prediction when working with large amounts of data. The application of deep learning in cancer prognosis has been shown to be equivalent or better than current approaches, such as Cox-PH. With the burst of multi-omics data, including genomics data, transcriptomics data and clinical information in cancer studies, we believe that deep learning would potentially improve cancer prognosis.

5.
Colloids Surf B Biointerfaces ; 85(2): 103-15, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21439798

ABSTRACT

The purpose of this study is to investigate the biocompatibility and osteoconduction of active porous calcium-phosphate films on the novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy. The active porous calcium-phosphate films were prepared by the micro-arc oxidation method on the surface of a near ß biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then activated in a hydroxyl solution followed by an aminated solution. The phase composition, surface micro-topography and elemental characteristics of the active porous calcium-phosphate films were investigated with XRD, SEM, EDS and XPS. The biocompatibility was assessed using corrosion testing, the in vitro osteoblast cultivation test and implantation in soft tissue (subcutaneous and musculature). The osteoconduction was evaluated using the simulated body fluid test and by implantation in hard tissue. The results show that the active porous films are mainly composed of TiO(2) anatase and rutile. The oxide layer is a kind of porous ceramic intermixture containing Ca and P. Immersion in simulated body fluid can induce apatite formation on the porous calcium-phosphate films resulting in excellent bioactivity. Cell cultures revealed that MC3T3-E1 cells grew on the surface exhibiting favorable morphologies. These results indicate that the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with an active porous calcium-phosphate film has been shown to have excellent corrosion resistance, good biocompatibility and osteoconduction, which can promote cell proliferation and bone formation.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Bone Regeneration/physiology , Calcium Phosphates/chemistry , Animals , Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Dogs , Mice , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Molybdenum/chemistry , Osteoblasts/drug effects , Osteoblasts/physiology , Osteoblasts/ultrastructure , Oxidation-Reduction , Porosity , Prostheses and Implants , Rabbits , Selenium/chemistry , Tin/chemistry , Titanium/chemistry , X-Ray Diffraction , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...