Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.052
Filter
1.
Sci Rep ; 14(1): 12651, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825618

ABSTRACT

Effective disinfection methods are crucial in the cold chain transportation process of food due to the specificity of temperature and the diversity of contaminated flora. The objective of this study was to investigate the sanitizing effect of different disinfectants on various fungi at - 20 °C to achieve accurate disinfection of diverse bacterial populations. Peracetic acid, hydrogen peroxide, and potassium bisulfate were selected as low-temperature disinfectants and were combined with antifreeze. The sanitizing effect of these cryogenic disinfectants on pathogens such as Bacillus subtilis black variant spores (ATCC9372), Staphylococcus aureus (ATCC 6538), Candida albicans (ATCC 10231), Escherichia coli (8099), and poliovirus (PV-1) was sequentially verified by bactericidal and virus inactivation experiments. After a specified time of disinfection, a neutralizing agent was used to halt the sanitizing process. The study demonstrates that different disinfectants exhibit selective effects during the low-temperature disinfection process. Peracetic acid, hydrogen peroxide, and potassium monopersulfate are suitable for the low-temperature environmental disinfection of bacterial propagules, viruses, and fungal contaminants. However, for microorganisms with strong resistance to spores, a low-temperature disinfectant based on peracetic acid should be chosen for effective disinfection treatment. Our results provide a valuable reference for selecting appropriate disinfectants to sanitize various potential pathogens in the future.


Subject(s)
Cold Temperature , Disinfectants , Disinfection , Hydrogen Peroxide , Peracetic Acid , Disinfectants/pharmacology , Disinfection/methods , Hydrogen Peroxide/pharmacology , Peracetic Acid/pharmacology , Sulfates/pharmacology , Bacillus subtilis/drug effects , Potassium Compounds/pharmacology , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Escherichia coli/drug effects , Poliovirus/drug effects
2.
Cell Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834762

ABSTRACT

Coupling distinct enzymatic effectors emerges as an efficient strategy for defense against phage infection in bacterial immune responses, such as the widely studied nuclease and cyclase activities in the type III CRISPR-Cas system. However, concerted enzymatic activities in other bacterial defense systems are poorly understood. Here, we biochemically and structurally characterize a two-component defense system DUF4297-HerA, demonstrating that DUF4297-HerA confers resistance against phage infection by cooperatively cleaving dsDNA and hydrolyzing ATP. DUF4297 alone forms a dimer, and HerA alone exists as a nonplanar split spiral hexamer, both of which exhibit extremely low enzymatic activity. Interestingly, DUF4297 and HerA assemble into an approximately 1 MDa supramolecular complex, where two layers of DUF4297 (6 DUF4297 molecules per layer) linked via inter-layer dimerization of neighboring DUF4297 molecules are stacked on top of the HerA hexamer. Importantly, the complex assembly promotes dimerization of DUF4297 molecules in the upper layer and enables a transition of HerA from a nonplanar hexamer to a planar hexamer, thus activating their respective enzymatic activities to abrogate phage infection. Together, our findings not only characterize a novel dual-enzyme anti-phage defense system, but also reveal a unique activation mechanism by cooperative complex assembly in bacterial immunity.

3.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 691-694, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38845704

ABSTRACT

The title compound, tetra-ethyl-ammonium tri-azido-tri-µ3-sulfido-[µ3-(tri-methyl-sil-yl)aza-nediido][tris-(3,5-di-methyl-pyrazol-1-yl)hydro-borato]triiron(+2.33)molybdenum(IV), (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] or (Et4N)[(Tp*)MoFe3S3(µ3-NSiMe3)(N3)3] [Tp* = tris-(3,5-di-methyl-pyrazol-1-yl)hydro-bor-ate(1-)], crystallizes as needle-like black crystals in space group P . In this cluster, the Mo site is in a distorted octa-hedral coordination model, coordinating three N atoms on the Tp* ligand and three µ3-bridging S atoms in the core. The Fe sites are in a distorted tetra-hedral coordination model, coordinating two µ3-bridging S atoms, one µ3-bridging N atom from Me3SiN2-, and another N atom on the terminal azide ligand. This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo-Fe-S cluster family, which may be a good reference for understanding the structure and function of the nitro-genase FeMo cofactor. The residual electron density of disordered solvent mol-ecules in the void space could not be reasonably modeled, thus the SQUEEZE [Spek (2015). Acta Cryst. C71, 9-18] function was applied. The solvent contribution is not included in the reported mol-ecular weight and density.

4.
Anal Chem ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847602

ABSTRACT

Ferroptosis is a pattern of cell death caused by iron-dependent accumulation of lipid peroxides and is closely associated with the occurrence and development of multiple diseases. Acrolein (ACR), one of the final metabolites of lipid peroxidation, is a reactive carbonyl species with strong biotoxicity. Effective detection of ACR is important for understanding its role in the progression of ferroptosis and studying the specific mechanisms of ferroptosis-mediated diseases. However, visualization detection of ACR during ferroptosis has not yet been reported. In this work, the first ratiometric fluorescent probe (HBT-SH) based on 2-(2'-hydroxyphenyl) benzothiazole (HBT) was designed for tracing endogenous ACR with an unprecedented regiospecific ACR-induced intramolecular cyclization strategy, which employs 2-aminoethanethiol as an ACR-selective recognition receptor. The experimental results showed that HBT-SH has excellent selectivity, high sensitivity (LOD = 0.26 µM) and good biocompatibility. More importantly, the upregulation of ACR levels was observed during ferroptosis in HeLa cells and zebrafish, indicating that ACR may be a specific active molecule that plays an essential biological role during ferroptosis or may serve as a potential marker of ferroptosis, which has great significance for studying the pathological process and treatment options of ferroptosis-related diseases.

5.
Nat Commun ; 15(1): 3721, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698059

ABSTRACT

The enormous and widespread use of organoboronic acids has prompted the development of innovative synthetic methodologies to meet the demands on structural diversity and functional group tolerance. The existing photoinduced defunctionalization radical borylation, typically focused on the conversion of one C-X bond (X= Br, I, or other leaving group) into only one C-B bond. Herein, we disclose a divergent radical dechloroborylation reaction enabled by dinuclear gold catalysis with visible light irradiation. A wide range of structurally diverse alkyl boronic, α-chloroboronic, and gem-diboronic esters can be synthesized in moderate to good yields (up to 92%). Its synthetic robustness is further demonstrated on a preparative scale and applied to late-stage diversification of complex molecules. The process hinges on a C-Cl bond relay activation in readily available gem-dichloroalkanes through inner-sphere electron transfer, overcoming the redox potential limits of unreactive alkyl chlorides.

6.
J Inorg Biochem ; 257: 112585, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38718498

ABSTRACT

Ruthenium complexes are one of the most promising anticancer drugs and ferroptosis is a novel form of regulated cell death, the study on the effect of Ru complexes on ferroptosis is helpful to find more effective antitumor drugs. Here, the synthesis and characterization of two Ru complexes containing 8-hydroxylquinoline and triphenylphosphine as ligands, [Ru(L1) (PPh3)2Cl2] (Ru-1), [Ru(L2) (PPh3)2Cl2] (Ru-2), were reported. Complexes Ru-1 âˆ¼ Ru-2 showed good anticancer activity in Hep-G2 cells. Researches indicated that complexes Ru-1 âˆ¼ Ru-2 could be enriched and appear as red fluorescence in the mitochondria, arouse dysfunction of mitochondria, induce the accumulation of reactive oxygen species (ROS) and lipid peroxidation (LPO), while the morphology of nuclei and cell apoptosis had no significant change. Further experiments proved that GPX4 and Ferritin were down-regulated, which eventually triggered ferroptosis in Hep-G2 cells. Remarkably, Ru-1 showed high inhibitory activity against xenograft tumor growth in vivo (TGIR = 49%). This study shows that the complex Ru-1 could act as a novel drug candidate by triggering cell ferroptosis.

7.
Heliyon ; 10(10): e31192, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813236

ABSTRACT

Background: This study aimed to explore the expression level and transcriptional regulation mechanism of Extra Spindle Pole Bodies Like 1 (ESPL1) in bladder cancer (BC). Methods: A multicentre database of samples (n = 1391) was assayed for ESPL1 mRNA expression in BC and validated at the protein level by immunohistochemical (IHC) staining of in-house samples (n = 202). Single-cell sequencing (scRNA-seq) analysis and enrichment analysis explored ESPL1 distribution and their accompanying molecular mechanisms. ATAC-seq, ChIP-seq and Hi-C data from multiple platforms were used to investigate ESPL1 upstream transcription factors (TFs) and potential epigenetic regulatory mechanisms. Immune-related analysis, drug sensitivity and molecular docking of ESPL1 were also calculated. Furthermore, upstream microRNAs and the binding sites of ESPL1 were predicted. The expression level and early screening efficacy of miR-299-5p in blood (n = 6625) and tissues (n = 537) were examined. Results: ESPL1 was significantly overexpressed at the mRNA level (p < 0.05, SMD = 0.75; 95 % CI = 0.09, 1.40), and IHC staining of in-house samples verified this finding (p < 0.0001). ESPL1 was predominantly distributed in BC epithelial cells. Coexpressed genes of ESPL1 were enriched in cell cycle-related signalling pathways, and ESPL1 might be involved in the communication between epithelial and residual cells in the Hippo, ErbB, PI3K-Akt and Ras signalling pathways. Three TFs (H2AZ, IRF5 and HIF1A) were detected upstream of ESPL1 and presence of promoter-super enhancer and promoter-typical enhancer loops. ESPL1 expression was correlated with various immune cell infiltration levels. ESPL1 expression might promote BC growth and affect the sensitivity and therapeutic efficacy of paclitaxel and gemcitabine in BC patients. As an upstream regulator of ESPL1, miR-299-5p expression was downregulated in both the blood and tissues, possessing great potential for early screening. Conclusions: ESPL1 expression was upregulated in BC and was mainly distributed in epithelial cells. Elevated ESPL1 expression was associated with TFs at the upstream transcription start site (TSS) and distant chromatin loops of regulatory elements. ESPL1 might be an immune-related predictive and diagnostic marker for BC, and the overexpression of ESPL1 played a cancer-promoting role and affected BC patients' sensitivity to drug therapy. miR-299-5p was downregulated in BC blood and tissues and was also expected to be a novel marker for early screening.

8.
J Thorac Dis ; 16(4): 2341-2352, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738257

ABSTRACT

Background: Intracardiac echocardiography (ICE) is a novel technology with certain advantages in treatment of atrial fibrillation (AF), yet there is limited research on the use of ICE in radiofrequency ablation for AF treatment in China. The aim of this study was to investigate the total fluoroscopy time and dose, safety, and effectiveness of ICE guided vs. traditional fluoroscopy (non-ICE) guided radiofrequency ablation for AF in China. Methods: We conducted a single-center retrospective analysis of patients who underwent ICE or traditional fluoroscopy-guided radiofrequency ablation for AF. The primary endpoint of this study was total fluoroscopy time, and the secondary endpoints included total fluoroscopy dose, acute surgery failure, transseptal puncture time, ablation time, total procedure time, and 6-month surgery success (no AF recurrence or atrial flutter). As an exploratory analysis, outcomes of interest by different types of AF were examined. Results: A total of 97 patients were included in the analysis. Forty-eight were in the ICE group and 49 were in the non-ICE group with comparable demographic and clinical characteristics at the baseline. None of patients experienced acute surgery failure with no major procedure-related complications occurred. The fluoroscopic time and dose were significantly lower in the ICE group compared to the non-ICE group (0.00 vs. 9.67±4.88 min, P<0.001; 0.00 vs. 77.10±44.28 mGy/cm2, P<0.001, respectively). There were no statistically significant differences in transseptal puncture time, ablation time and total procedure time between the two groups. There were two AF recurrences observed during the 6-month follow-up in each group (P>0.99). Conclusions: ICE significantly reduced the fluoroscopic time and dose for radiofrequency catheter ablation in AF patients. There were no significant differences in safety or effectiveness outcomes between the ICE and non-ICE groups.

9.
Aging Dis ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38739929

ABSTRACT

Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.

10.
Acad Radiol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772798

ABSTRACT

RATIONALE AND OBJECTIVES: The mutations in the 23S ribosomal RNA (rRNA) gene are associated with an increase in resistance to macrolides in children with Mycoplasma pneumoniae pneumonia (MPP). This study aimed to develop and validate a chest computed tomography (CT) radiomics model for determining macrolide resistance-associated gene mutation status in MPP. MATERIALS AND METHODS: A total of 258 MPP patients were retrospectively included from two institutions (training set: 194 patients from the first institution; external test set: 64 patients from the second). The 23S rRNA gene mutation status was tested by nasopharyngeal swab polymerase chain reaction. Radiomics features were extracted from chest CT images of pulmonary lesions segmented with semi-automatic delineation. Subsequently, radiomics feature reduction was applied to identify the most relevant features. Logistic regression and random forest algorithms were employed to establish the radiomics models, which were five-fold cross-validated in the training set and validated in the external test set. RESULTS: The radiomics feature selection resulted in eight features. After five-fold cross-validation in the training set, the mean areas under the receiver operating characteristic curve (AUCs) of the logistic regression and random forest models were 0.868 (95% confidence interval (CI): 0.813-0.923) and 0.941 (95% CI: 0.907-0.975), respectively. In the external test set, the corresponding AUCs were 0.855 (95% CI: 0.758-0.952) and 0.815 (95% CI: 0.705-0.925). CONCLUSION: Chest CT radiomics is a promising diagnostic tool for determining macrolide resistance gene mutation status in MPP. AVAILABILITY OF DATA AND MATERIAL: The datasets generated or analyzed during the study are available from the corresponding author on reasonable request.

11.
Chemosphere ; 358: 142192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701862

ABSTRACT

Current human health risk assessments of soil arsenic (As) contamination rarely consider bioaccessibility (IVBA), which may overestimate the health risks of soil As. The IVBA of As (As-IVBA) may differ among various soil types. This investigation of As-IVBA focused As from geological origin in a typical subtropical soil, lateritic red soil, and its risk control values. The study used the SBRC gastric phase in vitro digestion method and As speciation sequential extraction based upon phosphorus speciation extraction method. Two construction land sites (CH and HD sites) in the Pearl River Delta region were surveyed. The results revealed a high content of residual As (including scorodite, mansfieldite, orpiment, realgar, and aluminum arsenite) in the lateritic red soils at both sites (CH: 84.9%, HD: 91.7%). The content of adsorbed aluminum arsenate (CH: 3.24%, HD: 0.228%), adsorbed ferrum arsenate (CH: 8.55%, HD: 5.01%), and calcium arsenate (CH: 7.33%, HD: 3.01%) were found to be low. The bioaccessible As content was significantly positively correlated with the As content in adsorbed aluminum arsenate, adsorbed ferrum arsenate, and calcium arsenate. A small portion of these sequential extractable As speciation could be absorbed by the human body (CH: 14.9%, HD: 3.16%), posing a certain health risk. Adsorbed aluminum arsenate had the highest IVBA, followed by calcium arsenate, and adsorbed ferrum arsenate had the lowest IVBA. The aforementioned speciation characteristics of As from geological origin in lateritic red soil contributed to its lower IVBA compared to other soils. The oxidation state of As did not significantly affect As-IVBA. Based on As-IVBA, the carcinogenic and non-carcinogenic risks of soil As in the CH and HD sites decreased greatly in human health risk assessment. The results suggest that As-IVBA in lateritic red soil should be considered when assessing human health risks on construction land.


Subject(s)
Arsenic , Soil Pollutants , Soil , Arsenic/analysis , Arsenic/chemistry , Humans , Soil Pollutants/analysis , Soil Pollutants/chemistry , Risk Assessment , Soil/chemistry , Environmental Monitoring , Biological Availability , China
12.
Biomaterials ; 309: 122616, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38776592

ABSTRACT

The gel microsphere culture system (GMCS) showed various advantages for mesenchymal stem cell (MSC) expansion and delivery, such as high specific surface area, small and regular shape, extensive adjustability, and biomimetic properties. Although various technologies and materials have been developed to promote the development of gel microspheres, the differences in the biological status of MSCs between the GMCS and the traditional Petri dish culture system (PDCS) are still unknown, hindering gel microspheres from becoming a culture system as widely used as petri dishes. In the previous study, an excellent "all-in-one" GMCS has been established for the expansion of human adipose-derived MSCs (hADSCs), which showed convenient cell culture operation. Here, we performed transcriptome and proteome sequencing on hADSCs cultured on the "all-in-one" GMCS and the PDCS. We found that hADSCs cultured in the GMCS kept in an undifferentiation status with a high stemness index, whose transcriptome profile is closer to the adipose progenitor cells (APCs) in vivo than those cultured in the PDCS. Further, the high stemness status of hADSCs in the GMCS was maintained through regulating cell-ECM interaction. For application, bilayer scaffolds were constructed by osteo- and chondro-differentiation of hADSCs cultured in the GMCS and the PDCS. The effect of osteochondral regeneration of the bilayer scaffolds in the GMCS group was better than that in the PDCS group. This study revealed the high stemness and excellent functionality of MSCs cultured in the GMCS, which promoted the application of gel microspheres in cell culture and tissue regeneration.


Subject(s)
Adipose Tissue , Cell Differentiation , Mesenchymal Stem Cells , Microspheres , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Animals , Extracellular Matrix/metabolism , Cells, Cultured , Tissue Scaffolds/chemistry , Gels/chemistry , Chondrogenesis , Osteogenesis , Cell Culture Techniques/methods
13.
Bioresour Technol ; 402: 130767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692373

ABSTRACT

The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.


Subject(s)
Lead , Nitrogen , Salinity , Wastewater , Wastewater/chemistry , Lead/metabolism , Nitrogen/metabolism , Water Purification/methods , Oxidation-Reduction , Sewage/microbiology , Anaerobiosis/drug effects , Bacteria/metabolism , Bacteria/drug effects , Bioreactors , Microbiota/drug effects , Denitrification/drug effects
14.
Inorg Chem ; 63(21): 9975-9982, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38747890

ABSTRACT

The ability to control the catalytic activity of enzymes in chemical transformations is essential for the design and development of artificial catalysts. Herein, we report the synthesis and characterization of functional ligands featuring two 1,4,7,10-tetraazacyclododecane units linked by an azobenzene group and their corresponding dinuclear Zn(II) complexes. We show that the configuration switching (E/Z) of the azobenzene spacer in the ligands and their dinuclear Zn(II) complexes is reversibly controlled by irradiation with UV and visible light. The Zn(II)-metal complexes are light-responsive catalysts for the hydrolytic cleavage of nerve agent simulants, i.e., p-nitrophenyl diphenyl phosphate and methyl paraoxon. The catalytic activity of the Z-isomers of the dinuclear Zn(II) complexes outperformed that of the E-counterparts. Moreover, combining the less active E-isomers with gold nanoparticles induced an enhancement in the hydrolysis rate of p-nitrophenyl diphenyl phosphate. Kinetic analysis has shown that the catalytic site appears to involve a single metal ion. We explain our results by considering the different desolvation effects occurring in the catalyst's configurations in the solution and the catalytic systems involving gold nanoparticles.

15.
J Colloid Interface Sci ; 669: 944-951, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759593

ABSTRACT

Understanding the structure-function relationships encoded on chiral catalysts is important for investigating the fundamental principles of catalytic enantioselectivity. Herein, the synthesis and self-assembly of naphthalene substituted bis-l/d-histidine amphiphiles (bis-l/d-NapHis) in DMF/water solution mixture is reported. The resulting supramolecular assemblies featuring well-defined P/M nanoribbons (NRs). With combination of the (P/M)-NR and metal ion catalytic centers (Mn+ = Co2+, Cu2+, Fe3+), the (P)-NR-Mn+ as chiral supramolecular catalysts show catalytic preference to 3,4-dihydroxy-S-phenylalanine (S-DOPA) oxidation while the (M)-NR-Mn+ show enantioselective bias to R-DOPA oxidation. In contrast, their monomeric counterparts bis-l/d-NapHis-Mn+ display an inverse and dramatically lower catalytic selectivity in the R/S-DOPA oxidation. Among them, the Co2+-coordinated supramolecular nanostructures show the highest catalytic efficiency and enantioselectivity (select factor up to 2.70), while the Fe3+-coordinated monomeric ones show nearly racemic products. Analysis of the kinetic results suggests that the synergistic effect between metal ions and the chiral supramolecular NRs can significantly regulate the enantioselective catalytic activity, while the metal ion-mediated monomeric bis-l/d-NapHis were less active. The studies on association constants and activation energies reveal the difference in catalytic efficiency and enantioselectivity resulting from the different energy barriers and binding affinities existed between the chiral molecular/supramolecular structures and R/S-DOPA enantiomers. This work clarifies the correlation between chiral molecular/supramolecular structures and enantioselective catalytic activity, shedding new light on the rational design of chiral catalysts with outstanding enantioselectivity.

16.
Nano Lett ; 24(22): 6634-6643, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38742828

ABSTRACT

The effect of strong metal-support interaction (SMSI) has never been systematically studied in the field of nanozyme-based catalysis before. Herein, by coupling two different Pd crystal facets with MnO2, i.e., (100) by Pd cube (Pdc) and (111) by Pd icosahedron (Pdi), we observed the reconstruction of Pd atomic structure within the Pd-MnO2 interface, with the reconstructed Pdc (100) facet more disordered than Pdi (111), verifying the existence of SMSI in such coupled system. The rearranged Pd atoms in the interface resulted in enhanced uricase-like catalytic activity, with Pdc@MnO2 demonstrating the best catalytic performance. Theoretical calculations suggested that a more disordered Pd interface led to stronger interactions with intermediates during the uricolytic process. In vitro cell experiments and in vivo therapy results demonstrated excellent biocompatibility, therapeutic effect, and biosafety for their potential hyperuricemia treatment. Our work provides a brand-new perspective for the design of highly efficient uricase-mimic catalysts.


Subject(s)
Hyperuricemia , Manganese Compounds , Oxides , Urate Oxidase , Hyperuricemia/drug therapy , Urate Oxidase/chemistry , Urate Oxidase/therapeutic use , Urate Oxidase/metabolism , Oxides/chemistry , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Humans , Palladium/chemistry , Palladium/pharmacology , Animals , Catalysis , Uric Acid/chemistry , Mice
17.
Heliyon ; 10(8): e29483, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644842

ABSTRACT

Methylene blue (MB) was found to exert neuroprotective effect on different brain diseases, such as ischemic stroke. This study assessed the MB effects on ischemia induced brain edema and its role in the inhibition of aquaporin 4 (AQP4) and metabotropic glutamate receptor 5 (mGluR5) expression. Rats were exposed 1 h transient middle cerebral artery occlusion (tMCAO), and MB was injected intravenously following reperfusion (3 mg/kg). Magnetic resonance imaging (MRI) and 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed 48 h after the onset of tMCAO to evaluate the brain infarction and edema. Brain tissues injuries as well as the glial fibrillary acidic protein (GFAP), AQP4 and mGluR5 expressions were detected. Oxygen and glucose deprivation/reoxygenation (OGD/R) was performed on primary astrocytes (ASTs) to induce cell swelling. MB was administered at the beginning of reoxygenation, and the perimeter of ASTs was measured by GFAP immunofluorescent staining. 3,5-dihydroxyphenylglycine (DHPG) and fenobam were given at 24 h before OGD to examine their effects on MB functions on AST swelling and AQP4 expression. MB remarkably decreased the volumes of T2WI and ADC lesions, as well as the cerebral swelling. Consistently, MB treatment significantly decreased GFAP, mGluR5 and AQP4 expression at 48 h after stroke. In the cultivated primary ASTs, OGD/R and DHPG significantly increased ASTs volume as well as AQP4 expression, which was reversed by MB and fenobam treatment. The obtained results highlight that MB decreases the post-ischemic brain swelling by regulating the activation of AQP4 and mGluR5, suggesting potential applications of MB on clinical ischemic stroke treatment.

18.
World J Clin Cases ; 12(11): 1947-1953, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38660545

ABSTRACT

BACKGROUND: Schwannomas are rare peripheral neural myelin sheath tumors that originate from Schwann cells. Of the different types of schwannomas, pelvic sciatic nerve schwannoma is extremely rare. Definite preoperative diagnosis of pelvic schwannomas is difficult, and surgical resection is the gold standard for its definite diagnosis and treatment. CASE SUMMARY: We present a case of pelvic schwannoma arising from the sciatic nerve that was detected in a 40-year-old man who underwent computed tomography for intermittent right lower back pain caused exclusively by a right ureteral calculus. Subsequently, successful transperitoneal laparoscopic surgery was performed for the intact removal of the stone and en bloc resection of the schwannoma. The total operative time was 125 min, and the estimated blood loss was inconspicuous. The surgical procedure was uneventful. The patient was discharged on postoperative day 5 with the simultaneous removal of the urinary catheter. However, the patient presented with motor and sensory disorders of the right lower limb, caused by partial damage to the right sciatic nerve. No tumor recurrence was observed at the postoperative appointment. CONCLUSION: Histopathological examination of the specimen confirmed the diagnosis of a schwannoma. Thus, laparoscopic surgery is safe and feasible for concomitant extirpation of pelvic schwannomas and other pelvic and abdominal diseases that require surgical treatment.

19.
Front Surg ; 11: 1279194, 2024.
Article in English | MEDLINE | ID: mdl-38601877

ABSTRACT

Purpose: We prospectively evaluate the short-term clinical and radiographic outcomes of the only Chinese domestically produced trabecular titanium acetabular cup(3D ACT™ cup) in primary total hip arthroplasty (THA), aiming to provide evidence-based support for its clinical application. Methods: A total of 236 patients, who underwent primary THA using 3D ACT™ cup in the Department of Joint Surgery at our hospital between January 2017 and June 2019, were included in this study. General patient data, imaging information, functional scores, and complications were collected to evaluate the early clinical efficacy. Results: All patients were followed up for 33-52 months, with an average of (42.2 ± 9.2) months. At the last follow-up, the preoperative HHS score increased significantly from 43.7 ± 6.8 to 85.6 ± 9.3 points (P < 0.01). Similarly, the preoperative WOMAC scores showed significant improvement from 59.2 ± 5.8 to 13.1 ± 3.5 points (P < 0.01). 92.3% of the patients expressed satisfaction or high satisfaction with the clinical outcome. Furthermore, 87.7% of the acetabular cups were positioned within the Lewinnek safe zone, achieving successful reconstruction of the acetabular rotation center. The cup survival rate at the last follow-up was 100%. Conclusions: The utilization of the only Chinese domestically manufactured 3D printing trabecular titanium acetabular cup in primary THA demonstrated favorable short-term clinical and radiographic outcomes. The acetabular cup exhibits excellent initial stability, high survival rate, and favorable osseointegration, leading to a significant enhancement in pain relief and functional improvement. In the future, larger sample sizes and multicenter prospective randomized controlled trials will be required to validate the long-term safety and effectiveness of this 3D ACT™ cup.

20.
Front Microbiol ; 15: 1378273, 2024.
Article in English | MEDLINE | ID: mdl-38666257

ABSTRACT

The endophytic microbial community reassembles to participate in plant immune balance when the host plants are stressed by pathogens. However, it remains unclear whether this assembly is pathogen-specific and how regulatory pathways are coordinated in multi-pathogens. In order to investigate the effects of infection with Colletotrichum gloeosporioides (Cg treatment) and Fusarium proliferatum (Fp treatment) on walnut leaf endophytic microbiome in their assembly, co-occurrence pattern, and on comprehensive chemical function of the internal environment of leaf, an interaction system of the walnut-pathogenic fungi was constructed using seed embryo tissue culture technology. The study showed differences in the assembly of endophytic microbial communities in walnut trees across three groups (control group, Ck; Cg; Fp) after Cg and Fp treatments. Despite changes in relative abundances, the dominant communities in phyla and genera remained comparable during the infection of the two pathogens. Endophyte fungi were more sensitive to the pathogen challenge than endophyte bacteria. Both promoted the enrichment of beneficial bacteria such as Bacillus and Pseudomonas, changed the modularity of the community, and reduced the stability and complexity of the endophyte community. Pathogenic fungi infection mainly affects the metabolism of porphyrin and chlorophyll, purine metabolism, phenylpropane metabolism, and amino acid metabolism. However, there was no significant difference in the secondary metabolites for the different susceptible plants. By screening endogenous antagonistic bacteria, we further verified that Pseudomonas psychrotolerans and Bacillus subtilis had inhibitory effects on the two pathogenic fungi and participated in the interaction between the leaves and pathogenic fungi. The antibacterial substances may be 1-methylnaphthalene, 1,3-butadiene, 2,3-butanediol, and toluene aldehyde.

SELECTION OF CITATIONS
SEARCH DETAIL
...