Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(25): 10704-10711, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38869436

ABSTRACT

Self-assembly of M(ClO4)2 (M2+ = Ni2+, Cu2+, and Zn2+) with (1S,1'S,1''S,2R,2'R,2''R)-(benzenetricarbonyltris(azanediyl))tris(2,3-dihydro-1H-indene-2,1-diyl) trinicotinate (s,r-L) and the corresponding enantiomer (r,s-L) as a pair of chiral tridentate donors gives rise to the chiral cage pairs [M3(s,r- and r,s-L)2](ClO4)6. For the two pairs of [(Me2CO)(H2O)@M3(r,-s and s,r-L)2](ClO4)6 (M2+ = Ni2+ and Zn2+), the inner cavity is occupied by both an acetone and a single water molecule, whereas for the copper(II) pair of [Me2CO@Cu3(r,s- and s,r-L)2](ClO4)6 under the same conditions, the cavity is filled by only one acetone molecule. Thus, the encapsulation of guest molecules into the cages during self-assembly shows significant metal(II) ion effects. These chiral cages are effective for the enantio-recognition of chiral (S)-2-butanol and (R)-2-butanol via the shifts of the electrochemical oxidation potentials obtained by the linear sweep voltammetry (LSV) technique, density functional theory (DFT) calculations, and the chiral 2-butanol adsorption in the single-crystal-to-single-crystal (SCSC) mode.

2.
Dalton Trans ; 53(23): 9692-9699, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38766972

ABSTRACT

Self-assembly of M(ClO4)2 (M(II) = Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)) with dicyclopentyldi(pyridine-3-yl)silane (L) as a donor in a mixture of acetonitrile and toluene produces crystals consisting of M6L12 double-stranded macrocycles. The geometry around the M(II) cations is a typical octahedral arrangement, but the metallamacrocycles' outer axial coordination environment is sensitive to the M(II) cations. The conformation of the unique metallamacrocycles is informatively dependent on the nature of the coordination around the M(II) cations via subtle co-ligand competition among perchlorate anions, water, and acetonitrile. Both the coordinated acetonitriles and the solvate molecules of the crystals are removed at 170 °C, thereby transforming the crystals into new crystals that return to their original form in the mixture of toluene and acetonitrile. Catalytic oxidation of 3,5-di-tert-butylcatechol using [Cu6(ClO4)8(CH3CN)4L12]4ClO4·5C7H8 is much faster than those using the transformed product, [Cu(ClO4)2L2], and a simple mixture of Cu(ClO4)2 + L.

3.
Dalton Trans ; 53(21): 8934-8939, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38738336

ABSTRACT

The self-assembly of NiCl2 with a chiral bidentate ligand pair, (1R,2S)-(+)- and (1S,2R)-(-)-1-(nicotinamido)-2,3-dihydro-1H-inden-2-yl nicotinate (r,s-L and s,r-L) in a mixture of ethanol and dioxane, gives rise to stable crystals consisting of [2Cl@Ni2Cl2(s,r-L)4(H2O)2]·4C4H8O2·EtOH and [2Cl@Ni2Cl2(r,s-L)4(H2O)2]·4C4H8O2·EtOH chiral cages, respectively, with two encapsulated chloride anions in the cavities. The most interesting feature is that the self-assembly of NiCl2 with the mixture of r,s-L and s,r-L (1 : 1-1 : 4) produces crystals of thermodynamically stable achiral cages, [2Cl·2H2O@Ni2Cl2(s,r-L)2(r,s-L)2(H2O)2]·7C4H8O2, in the molar ratio range. Furthermore, the [2Cl@Ni2Cl2(s,r-L)4(H2O)2]·4C4H8O2·EtOH and [2Cl@Ni2Cl2(r,s-L)4(H2O)2]·4C4H8O2·EtOH chiral crystals can recognize the pairs of L-,D-tryptophan and L-,D-cysteine via cyclic voltammetry (CV) signals, in contrast to the [2Cl·2H2O@Ni2Cl2(s,r-L)2(r,s-L)2(H2O)2]·7C4H8O2 achiral crystal.

4.
ACS Omega ; 8(42): 39720-39729, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901500

ABSTRACT

Self-assembly of CuX2 (X- = BF4-, PF6-, and SbF6-) with a pair of chiral bidentate ligands, (1R,2S)-(+)- and (1S,2R)-(-)-1-(nicotinamido)-2,3-dihydro-1H-inden-2-yl-nicotinate (r,s-L or s,r-L), in a mixture solvent including ethanol in a glass vessel gives rise to SiF62--encapsulated Cu2L4 chiral cage products. The SiF62- anion from the reaction of X- with SiO2 of the glass-vessel surface acts as a cage template or cage bridge. One of the products, [SiF6@Cu2(SiF6)(s,r-L)4]·3CHCl3·4EtOH, is one of the most effective heterogeneous catalysts for the oxidation of 3,5-di-tert-butylcatechol. Furthermore, an l-DOPA/d-DOPA pair is recognizable by the cyclic voltammetry (CV) signals of its combination with chiral cages [SiF6@Cu2(BF4)2(s,r- or r,s-L)4]·4CHCl3·2EtOH pair and [SiF6@Cu2(SiF6)(s,r- or r,s-L)4]·3CHCl3·4EtOH pair.

5.
Inorg Chem ; 62(42): 17057-17061, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37823553

ABSTRACT

Informative similarities/differences between self-assembled and single-crystal-to-single-crystal (SCSC) guest-exchanged crystals based on both the molecular structure and adsorption nature are observed. The self-assembly of Ni(ClO4)2 with a dicyclopentyldi(pyridine-3-yl)silane bidentate ligand (L) in a mixture of toluene and acetonitrile gives rise to purple crystals consisting of double-stranded ellipsoidal tubes, [Ni6(ClO4)4(CH3CN)8L12]·8ClO4·4CH3CN·5C7H8. The coordinated acetonitriles as well as the solvates are removed at 170 °C to transform the purple crystals into blue crystals of [Ni(ClO4)2L2]n that return to the original crystals in the mixture of toluene and acetonitrile. Further, the toluene and acetonitrile solvates of the original crystals are replaced by o-, m-, and p-xylene isomers within 5 min in a SCSC manner. In the present study, SCSC xylene-exchanged crystals were compared with crystals obtained from direct self-assembly in a mixture of each xylene isomer and acetonitrile.

6.
RSC Adv ; 12(39): 25118-25122, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36199348

ABSTRACT

Formation of the unexpected hexafluorosilicate (SiF6 2-) anion during crystallization via self-assembly in glassware is scrutinized. Self-assembly of M(BF4)2 (M2+ = Cu2+ and Zn2+) with tridentate N-donors (L) in a mixture solvent including methanol in a glass vessel gives rise to an SiF6 2--encapsulated Cu3L4 double-decker cage and a Zn2L4 cage, respectively. Induced reaction of CuX2 (X- = PF6 - and SbF6 -) instead of Cu(BF4)2, with the tridentate ligands, produces the same species. The formation time of SiF6 2- is in the order of anions BF4 - < PF6 - < SbF6 - under the given reaction conditions. The SiF6 2- anion, acting as a cage template or cage-to-cage bridge, seems to be formed from the reaction of polyatomic anions containing fluoride with the SiO2 of the surface of the glass vessel.

7.
Dalton Trans ; 51(15): 5810-5817, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35333267

ABSTRACT

Self-assembly of CuX2 (X- = BF4-, ClO4-, PF6-, and SbF6-) with a bidentate ethylmethylbis(3-pyridine)silane ligand (L) in the presence of additional polyatomic anions (X' = SiF62- and PF6-) gives rise to single crystals consisting of the X'@[Cu(II)3L6] cage motif. These cages exist as discrete or anion-bridged 3D networks depending on outside anions. The anion-bridged 3D networks interpenetrate in a four-fold fashion, and show, to our best knowledge, the most effective heterogeneous catalysis in 3,5-di-tert-butylcatechol oxidation reaction within 20 min at room temperature. Surprisingly, the heterogeneous catalysis is more effective than its corresponding homogeneous catalysis. Such notable catalytic effects can be explained by the maintenance of 3D inter-cage Cu⋯Cu distance as a catalytic center.

8.
Dalton Trans ; 50(41): 14849-14854, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34604882

ABSTRACT

Systematic interconversion between trigonal prisms [Pd3X6L2] (X- = Cl-, Br-, and I-) and cubic cages [Pd6L8]12+(X-)12 (X- = BF4- and CF3SO3-) via anion exchange was established. Self-assembly of K2PdX4 (X- = Cl- and Br-) with a C3-symmetric tridentate 1,3,5-tris(2-isonicotinamidephenoxy)benzene (L) produces a trigonal prism, [Pd3X6L2]. Further photoreaction of the [Pd3X6L2] (X- = Cl- and Br-) with CH2I2 gives rise to a halide-exchanged species, [Pd3I6L2]. In contrast, anion exchange of [Pd3X6L2] (X- = Cl-, Br-, and I-) with BF4- yields cubic-shaped cages, [Pd6L8]12+(BF4-)12, with an inner cavity of 15.9 × 15.9 × 15.9 Å3. Successive anion exchange of [Pd6L8]12+(BF4-)12 with CF3SO3- gives rises to anion-exchanged [Pd6L8]12+(CF3SO3-)12 and vice versa without cage destruction. Thus, the cage system is specifically sensitive to anions, enabling cage formation to recognize the binding affinity and size of various anions.

9.
Mol Cells ; 43(6): 539-550, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32597394

ABSTRACT

Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.


Subject(s)
Brain Neoplasms/immunology , Glioblastoma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, CXCR4/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Xenograft Model Antitumor Assays , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Cell Communication/drug effects , Cell Line, Tumor , Cell Movement , Cell Polarity/drug effects , Cell Proliferation , Chemokine CXCL12/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/blood supply , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Green Fluorescent Proteins/metabolism , Humans , Macrophages/drug effects , Macrophages/pathology , Magnetic Resonance Imaging , Mice, Inbred BALB C , Mice, Nude , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Neoplasm Invasiveness , Reproducibility of Results , Signal Transduction/drug effects
10.
Int J Stem Cells ; 13(1): 127-141, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31887850

ABSTRACT

BACKGROUND AND OBJECTIVES: Stem cell therapy is a promising strategy for treating neurological diseases but its effectiveness is influenced by the route of administration and the characteristics of the stem cells. We determined whether neural induction of mesenchymal stem cells (MSCs) was beneficial when the cells were delivered intra-arterially through the carotid artery. METHODS AND RESULTS: MSCs were neurally induced using a retroviral vector expressing the neurogenic transcription factor neurogenin-1 (Ngn1). The LacZ gene encoding bacterial ß-galactosidase was used as a control. Ischemic stroke was induced by transluminal occlusion of the middle cerebral artery and 3 days later the MSCs were delivered intra-arterially through the internal carotid artery. Magnetic resonance imaging analysis indicated that compared to MSCs expressing LacZ (MSCs/LacZ), MSCs expressing Ngn1 (MSCs/Ngn1) exhibited increased recruitment to the ischemic region and populated this area for a longer duration. Immunohistochemical analysis indicated that compared to MSCs/LacZ, MSCs/Ngn1 more effectively alleviated neurological dysfunction by blocking secondary damage associated with neuronal cell death and brain inflammation. Microarray and real-time PCR analysis indicated that MSCs/Ngn1 exhibited increased expression of chemotactic cytokine receptors, adherence to endothelial cells, and migration ability. CONCLUSIONS: Neural induction with Ngn1 increases the homing ability of MSCs, enhancing their engraftment efficiency in the ischemic rat brain. Intra-arterial delivery of neurally induced MSCs/Ngn1 3 days after ischemic injury blocks neuronal cell death and inflammation, and improves functional recovery. Thus, intra-arterial administration of stem cells with neural properties may be a novel therapy for the treatment of ischemic stroke.

11.
Sensors (Basel) ; 18(9)2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30205499

ABSTRACT

The Internet of Things (IoT), inspired by the tremendous growth of connected heterogeneous devices, has pioneered the notion of smart city. Various components, i.e., smart transportation, smart community, smart healthcare, smart grid, etc. which are integrated within smart city architecture aims to enrich the quality of life (QoL) of urban citizens. However, real-time processing requirements and exponential data growth withhold smart city realization. Therefore, herein we propose a Big Data analytics (BDA)-embedded experimental architecture for smart cities. Two major aspects are served by the BDA-embedded smart city. Firstly, it facilitates exploitation of urban Big Data (UBD) in planning, designing, and maintaining smart cities. Secondly, it occupies BDA to manage and process voluminous UBD to enhance the quality of urban services. Three tiers of the proposed architecture are liable for data aggregation, real-time data management, and service provisioning. Moreover, offline and online data processing tasks are further expedited by integrating data normalizing and data filtering techniques to the proposed work. By analyzing authenticated datasets, we obtained the threshold values required for urban planning and city operation management. Performance metrics in terms of online and offline data processing for the proposed dual-node Hadoop cluster is obtained using aforementioned authentic datasets. Throughput and processing time analysis performed with regard to existing works guarantee the performance superiority of the proposed work. Hence, we can claim the applicability and reliability of implementing proposed BDA-embedded smart city architecture in the real world.

12.
Proc Natl Acad Sci U S A ; 115(17): 4417-4422, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29632178

ABSTRACT

The exact mechanism to orchestrate the action of hundreds of dynein motor proteins to generate wave-like ciliary beating remains puzzling and has fascinated many scientists. We present a 3D model of a cilium and the simulation of its beating in a fluid environment. The model cilium obeys a simple geometric constraint that arises naturally from the microscopic structure of a real cilium. This constraint allows us to determine the whole 3D structure at any instant in terms of the configuration of a single space curve. The tensions of active links, which model the dynein motor proteins, follow a postulated dynamical law, and together with the passive elasticity of microtubules, this dynamical law is responsible for the ciliary motions. In particular, our postulated tension dynamics lead to the instability of a symmetrical steady state, in which the cilium is straight and its active links are under equal tensions. The result of this instability is a stable, wave-like, limit cycle oscillation. We have also investigated the fluid-structure interaction of cilia using the immersed boundary (IB) method. In this setting, we see not only coordination within a single cilium but also, coordinated motion, in which multiple cilia in an array organize their beating to pump fluid, in particular by breaking phase synchronization.


Subject(s)
Dyneins/metabolism , Eukaryotic Cells/physiology , Models, Biological , Cilia/physiology
13.
Molecules ; 23(4)2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29561800

ABSTRACT

Two new hole transporting materials, 2,7-bis(9,9-diphenylacridin-10(9H)-yl)-9,9' spirobi[fluorene] (SP1) and 2,7-di(10H-phenothiazin-10-yl)-9,9'-spirobi[fluorene] (SP2), were designed and synthesized by using the Buchwald-Hartwig coupling reaction with a high yield percentage of over 84%. Both of the materials exhibited high glass transition temperatures of over 150 °C. In order to understand the device performances, we have fabricated green phosphorescent organic light-emitting diodes (PhOLEDs) with SP1 and SP2 as hole transporting materials. Both of the materials revealed improved device properties, in particular, the SP2-based device showed excellent power (34.47 lm/W) and current (38.41 cd/A) efficiencies when compare with the 4,4'-bis(N-phenyl-1-naphthylamino)biphenyl (NPB)-based reference device (30.33 lm/W and 32.83 cd/A). The external quantum efficiency (EQE) of SP2 was 13.43%, which was higher than SP1 (13.27%) and the reference material (11.45%) with a similar device structure. The SP2 hole transporting material provides an effective charge transporting path from anode to emission layer, which is explained by the device efficiencies.


Subject(s)
Acridines/chemistry , Electronics , Luminescence , Phenothiazines/chemistry , Spiro Compounds/chemistry , Acridines/chemical synthesis , Calorimetry, Differential Scanning , Computer Simulation , Electrochemistry , Microscopy, Scanning Probe , Phenothiazines/chemical synthesis , Spectrophotometry, Ultraviolet , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...