Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
IEEE Rev Biomed Eng ; 17: 42-62, 2024.
Article in English | MEDLINE | ID: mdl-37471188

ABSTRACT

The integration of machine/deep learning and sensing technologies is transforming healthcare and medical practice. However, inherent limitations in healthcare data, namely scarcity, quality, and heterogeneity, hinder the effectiveness of supervised learning techniques which are mainly based on pure statistical fitting between data and labels. In this article, we first identify the challenges present in machine learning for pervasive healthcare and we then review the current trends beyond fully supervised learning that are developed to address these three issues. Rooted in the inherent drawbacks of empirical risk minimization that underpins pure fully supervised learning, this survey summarizes seven key lines of learning strategies, to promote the generalization performance for real-world deployment. In addition, we point out several directions that are emerging and promising in this area, to develop data-efficient, scalable, and trustworthy computational models, and to leverage multi-modality and multi-source sensing informatics, for pervasive healthcare.


Subject(s)
Machine Learning , Technology , Humans , Supervised Machine Learning
3.
IEEE J Biomed Health Inform ; 28(2): 765-776, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010934

ABSTRACT

Motor Imagery (MI) Electroencephalography (EEG) is one of the most common Brain-Computer Interface (BCI) paradigms that has been widely used in neural rehabilitation and gaming. Although considerable research efforts have been dedicated to developing MI EEG classification algorithms, they are mostly limited in handling scenarios where the training and testing data are not from the same subject or session. Such poor generalization capability significantly limits the realization of BCI in real-world applications. In this paper, we proposed a novel framework to disentangle the representation of raw EEG data into three components, subject/session-specific, MI-task-specific, and random noises, so that the subject/session-specific feature extends the generalization capability of the system. This is realized by a joint discriminative and generative framework, supported by a series of fundamental training losses and training strategies. We evaluated our framework on three public MI EEG datasets, and detailed experimental results show that our method can achieve superior performance by a large margin compared to current state-of-the-art benchmark algorithms.


Subject(s)
Brain-Computer Interfaces , Humans , Electroencephalography/methods , Algorithms , Benchmarking , Imagination
4.
J Neural Eng ; 20(6)2023 12 12.
Article in English | MEDLINE | ID: mdl-37931308

ABSTRACT

Objective. Brain-machine interfacing (BMI) has greatly benefited from adopting machine learning methods for feature learning that require extensive data for training, which are often unavailable from a single dataset. Yet, it is difficult to combine data across labs or even data within the same lab collected over the years due to the variation in recording equipment and electrode layouts resulting in shifts in data distribution, changes in data dimensionality, and altered identity of data dimensions. Our objective is to overcome this limitation and learn from many different and diverse datasets across labs with different experimental protocols.Approach. To tackle the domain adaptation problem, we developed a novel machine learning framework combining graph neural networks (GNNs) and transfer learning methodologies for non-invasive motor imagery (MI) EEG decoding, as an example of BMI. Empirically, we focus on the challenges of learning from EEG data with different electrode layouts and varying numbers of electrodes. We utilize three MI EEG databases collected using very different numbers of EEG sensors (from 22 channels to 64) and layouts (from custom layouts to 10-20).Main results. Our model achieved the highest accuracy with lower standard deviations on the testing datasets. This indicates that the GNN-based transfer learning framework can effectively aggregate knowledge from multiple datasets with different electrode layouts, leading to improved generalization in subject-independent MI EEG classification.Significance. The findings of this study have important implications for brain-computer-interface research, as they highlight a promising method for overcoming the limitations posed by non-unified experimental setups. By enabling the integration of diverse datasets with varying electrode layouts, our proposed approach can help advance the development and application of BMI technologies.


Subject(s)
Brain-Computer Interfaces , Brain , Electrodes , Machine Learning , Neural Networks, Computer , Electroencephalography , Algorithms
5.
Int J Med Robot ; 18(2): e2358, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34953033

ABSTRACT

BACKGROUND: From traditional open surgery to laparoscopic surgery and robot-assisted surgery, advances in robotics, machine learning, and imaging are pushing the surgical approach to-wards better clinical outcomes. Pre-clinical and clinical evidence suggests that automation may standardise techniques, increase efficiency, and reduce clinical complications. METHODS: A PRISMA-guided search was conducted across PubMed and OVID. RESULTS: Of the 89 screened articles, 51 met the inclusion criteria, with 10 included in the final review. Automatic data segmentation, trajectory planning, intra-operative registration, trajectory drilling, and soft tissue robotic surgery were discussed. CONCLUSION: Although automated surgical systems remain conceptual, several research groups have developed supervised autonomous robotic surgical systems with increasing consideration for ethico-legal issues for automation. Automation paves the way for precision surgery and improved safety and opens new possibilities for deploying more robust artificial intelligence models, better imaging modalities and robotics to improve clinical outcomes.


Subject(s)
Laparoscopy , Robotic Surgical Procedures , Robotics , Artificial Intelligence , Humans , Laparoscopy/methods , Machine Learning , Robotic Surgical Procedures/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...