Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Soc Psychol ; : 1-20, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38006411

ABSTRACT

Following the recent emphasis on supervisory interactions in abusive supervision, this study explains why and how supervisors' job insecurity and authoritarianism are related to abusive supervision and how subordinates' characteristics, agreeableness and negotiating resistance interact with the effects of supervisors' characteristics. We conducted a field study with 261 supervisor and subordinate dyads in South Korea, and the study findings confirmed that supervisors' authoritarianism is positively related to abusive supervision and that the effect is enhanced when subordinates are highly agreeable and display resistant behaviors. The study contributes to the leadership literature, particularly on abusive supervision and personality. Moreover, our findings have practical implications for employees to manage their work relationships with their supervisors or subordinates.

2.
Nat Commun ; 14(1): 4747, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550303

ABSTRACT

High-performance p-type two-dimensional (2D) transistors are fundamental for 2D nanoelectronics. However, the lack of a reliable method for creating high-quality, large-scale p-type 2D semiconductors and a suitable metallization process represents important challenges that need to be addressed for future developments of the field. Here, we report the fabrication of scalable p-type 2D single-crystalline 2H-MoTe2 transistor arrays with Fermi-level-tuned 1T'-phase semimetal contact electrodes. By transforming polycrystalline 1T'-MoTe2 to 2H polymorph via abnormal grain growth, we fabricated 4-inch 2H-MoTe2 wafers with ultra-large single-crystalline domains and spatially-controlled single-crystalline arrays at a low temperature (~500 °C). Furthermore, we demonstrate on-chip transistors by lithographic patterning and layer-by-layer integration of 1T' semimetals and 2H semiconductors. Work function modulation of 1T'-MoTe2 electrodes was achieved by depositing 3D metal (Au) pads, resulting in minimal contact resistance (~0.7 kΩ·µm) and near-zero Schottky barrier height (~14 meV) of the junction interface, and leading to high on-state current (~7.8 µA/µm) and on/off current ratio (~105) in the 2H-MoTe2 transistors.

3.
iScience ; 25(11): 105346, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36345340

ABSTRACT

High-performance van der Waals (vdW) integrated electronics and spintronics require reliable current-carrying capacity. However, it is challenging to achieve high current density and air-stable performance using vdW metals owing to the fast electrical breakdown triggered by defects or oxidation. Here, we report that spin-orbit interacted synthetic PtTe2 layers exhibit significant electrical reliability and robustness in ambient air. The 4-nm-thick PtTe2 synthesized at a low temperature (∼400°C) shows intrinsic metallic transport behavior and a weak antilocalization effect attributed to the strong spin-orbit scattering. Remarkably, PtTe2 sustains a high current density approaching ≈31.5 MA cm-2, which is the highest value among electrical interconnect candidates under oxygen exposure. Electrical failure is caused by the Joule heating of PtTe2 rather than defect-induced electromigration, which was achievable by the native TeOx passivation. The high-quality growth of PtTe2 and the investigation of its transport behaviors lay out essential foundations for the development of emerging vdW spin-orbitronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...