Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bio Protoc ; 12(3): e4318, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35284603

ABSTRACT

Macrophages are key cells in the innate immune system and play a role in a variety of diseases. However, macrophages are terminally differentiated and difficult to manipulate genetically via transfection or through CRISPR-Cas9 gene editing. To overcome this limitation, we provide a simplified protocol for the generation of mouse embryonic stem cells-derived macrophages (ESDM). Thus, genetic manipulation can be performed using embryonic stem cells, selecting for the desired changes, and finally producing macrophages to study the effects of the previous genetic manipulation. These studies can contribute to many areas of research, including atherosclerosis and inflammation. Production of ESDM has been previously achieved using embryoid body (EB) intermediates. Here, we optimized the EB method using a simplified medium, reducing the number of recombinant proteins and medium recipes required. Our EB-based differentiation protocol consists of three stages: 1) floating EB formation; 2) adherence of EBs and release of floating macrophage progenitors; and, 3) terminal differentiation of harvested macrophage progenitors. The advantages of this protocol include achieving independent floating EBs in stage 1 by using a rocker within the tissue culture incubator, as well as the exclusion of small EBs and cell clusters when harvesting macrophage progenitors via cell filtration.

2.
Front Cell Dev Biol ; 9: 715211, 2021.
Article in English | MEDLINE | ID: mdl-34395445

ABSTRACT

Activation of inflammasomes, such as Nlrp3 and AIM2, can exacerbate atherosclerosis in mice and humans. Gasdermin D (GsdmD) serves as a final executor of inflammasome activity, by generating membrane pores for the release of mature Interleukin-1beta (IL-1ß). Inflammation dampens reverse cholesterol transport (RCT) and promotes atherogenesis, while anti-IL-1ß antibodies were shown to reduce cardiovascular disease in humans. Though Nlrp3/AIM2 and IL-1ß nexus is an emerging atherogenic pathway, the direct role of GsdmD in atherosclerosis is not yet fully clear. Here, we used in vivo Nlrp3 inflammasome activation to show that the GsdmD-/- mice release ∼80% less IL-1ß vs. Wild type (WT) mice. The GsdmD-/- macrophages were more resistant to Nlrp3 inflammasome mediated reduction in cholesterol efflux, showing ∼26% decrease vs. ∼60% reduction in WT macrophages. GsdmD expression in macrophages exacerbated foam cell formation in an IL-1ß dependent fashion. The GsdmD-/- mice were resistant to Nlrp3 inflammasome mediated defect in RCT, with ∼32% reduction in plasma RCT vs. ∼57% reduction in WT mice, ∼17% reduction in RCT to liver vs. 42% in WT mice, and ∼37% decrease in RCT to feces vs. ∼61% in WT mice. The LDLr antisense oligonucleotides (ASO) induced hyperlipidemic mouse model showed the role of GsdmD in promoting atherosclerosis. The GsdmD-/- mice exhibit ∼42% decreased atherosclerotic lesion area in females and ∼33% decreased lesion area in males vs. WT mice. The atherosclerotic plaque-bearing sections stained positive for the cleaved N-terminal fragment of GsdmD, indicating cleavage of GsdmD in atherosclerotic plaques. Our data show that GsdmD mediates inflammation-induced defects in RCT and promotes atherosclerosis.

3.
Elife ; 102021 07 01.
Article in English | MEDLINE | ID: mdl-34197316

ABSTRACT

Quantitative trait locus mapping for interleukin-1ß release after inflammasome priming and activation was performed on bone-marrow-derived macrophages (BMDM) from an AKRxDBA/2 mouse strain intercross. The strongest associated locus mapped very close to the Pycard gene on chromosome 7, which codes for the inflammasome adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC). The DBA/2 and AKR Pycard genes only differ at a single-nucleotide polymorphism (SNP) in their 3' untranslated region (UTR). DBA/2 vs. AKR BMDM had increased levels of Pycard mRNA expression and ASC protein, and increased inflammasome speck formation, which was associated with increased Pycard mRNA stability without an increased transcription rate. CRISPR/Cas9 gene editing was performed on DBA/2 embryonic stem cells to change the Pycard 3'UTR SNP from the DBA/2 to the AKR allele. This single base change significantly reduced Pycard expression and inflammasome activity after cells were differentiated into macrophages due to reduced Pycard mRNA stability.


Subject(s)
3' Untranslated Regions/genetics , CARD Signaling Adaptor Proteins/genetics , Genetic Variation , Inflammasomes/genetics , Animals , CARD Signaling Adaptor Proteins/metabolism , Inflammasomes/metabolism , Mice
4.
Genes (Basel) ; 13(1)2021 12 28.
Article in English | MEDLINE | ID: mdl-35052410

ABSTRACT

A mouse strain intercross between Apoe-/- AKR/J and DBA/2J mice identified three replicated atherosclerosis quantitative trait loci (QTLs). Our objective was to fine map mouse atherosclerosis modifier genes within a genomic region known to affect lesion development in apoE-deficient (Apoe-/-) mice. We dissected the Ath28 QTL on the distal end of chromosome 2 by breeding a panel of congenic strains and measuring aortic root lesion area in 16-week-old male and female mice fed regular laboratory diets. The parental congenic strain contained ~9.65 Mb of AKR/J DNA from chromosome 2 on the DBA/2J genetic background, which had lesions 55% and 47% smaller than female and male DBA/2J mice, respectively (p < 0.001). Seven additional congenic lines identified three separate regions associated with the lesion area, named Ath28.1, Ath28.2, and Ath28.3, where the AKR/J alleles were atherosclerosis-protective for two regions and atherosclerosis-promoting for the other region. These results were replicated in both sexes, and in combined analysis after adjusting for sex. The congenic lines did not greatly impact total and HDL cholesterol levels or body weight. Bioinformatic analyses identified all coding and non-coding genes in the Ath28.1 sub-region, as well as strain sequence differences that may be impactful. Even within a <10 Mb region of the mouse genome, evidence supports the presence of at least three atherosclerosis modifier genes that differ between the AKR/J and DBA/2J mouse strains, supporting the polygenic nature of atherosclerosis susceptibility.


Subject(s)
Atherosclerosis/pathology , Chromosome Mapping , Genes, Modifier , Phenotype , Quantitative Trait Loci , Animals , Atherosclerosis/genetics , Crosses, Genetic , Female , Genomics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout, ApoE
5.
Atherosclerosis ; 286: 71-78, 2019 07.
Article in English | MEDLINE | ID: mdl-31102955

ABSTRACT

BACKGROUND AND AIMS: We previously demonstrated that Apoe-/- mice on DBA/2 vs. AKR genetic background have >10-fold larger atherosclerotic lesions. Prior quantitative trait locus mapping via strain intercrossing identified a region on chromosome 17, Ath26, as the strongest atherosclerosis-modifying locus. We aimed to confirm Ath26, identify candidate genes, and validate the candidate gene effects on atherosclerosis. METHODS: We bred chromosome 17 interval congenic mice to confirm that Ath26 locus contains atherosclerosis modifying gene(s). Bone marrow derived macrophage transcriptomics was performed to identify candidate genes at this locus whose expression was correlated with lesions in a strain intercross. The Cyp4f13 candidate gene was tested via a gene knockout approach and in vivo and ex vivo phenotype analyses. RESULTS: A congenic mouse strain containing the DBA/2 interval on chromosome 17 on the AKR Apoe-/- background demonstrated that this interval conferred increased lesion area. Transcriptomic analysis of bone marrow macrophages identified that expression of the Cyp4f13 gene, mapping to this locus, was highly associated with lesion area in an F2 cohort. AKR vs. DBA/2 macrophages had less Cyp4f13 mRNA expression, and their livers had lower leukotriene B4 (LTB4) 20-hydroxylase enzymatic activity. A Cyp4f13 knockout allele was bred onto the DBA/2 Apoe-/- background and this conferred less enzymatic activity, decreased macrophage migration in response to LTB4, and smaller aortic root atherosclerotic lesions. CONCLUSIONS: Allelic differences in the Cyp4f13 gene may in part be responsible for the Ath26 QTL conferring larger lesions in DBA/2 vs. AKR Apoe-/- mice.


Subject(s)
Atherosclerosis/genetics , Chromosomes, Mammalian/genetics , Genetic Loci , Animals , Female , Male , Mice , Mice, Congenic , Mice, Inbred AKR , Mice, Inbred DBA
6.
BMC Res Notes ; 11(1): 229, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29615096

ABSTRACT

OBJECTIVE: To determine if deficiency of CD6, a cell surface protein on lymphocytes that alters natural antibody production, increases atherosclerosis in ApoE-deficient mice fed a chow or a western-type diet. RESULTS: We compared cholesterol levels, IgM, B1a cells, and aortic root lesion areas in ApoE-deficient vs. CD6/ApoE double deficient mice. Feeding the high-fat western type diet increased all parameters, except for B1a cell numbers decreased. Sex also had an effect on many parameters with males having increased body weights, higher high density lipoprotein cholesterol, higher B1a cells, but smaller atherosclerotic lesions if chow fed mice; however, this sex effect on atherosclerosis was absent in mice fed the western-type diet. CD6 deficiency had no effect on atherosclerosis in both male and female mice on either diet. Thus, loss of CD6 on lymphocytes did not lead to expected reductions in B1a cells and protective IgM levels, and in turn did not alter atherosclerosis in mice.


Subject(s)
Antigens, CD , Antigens, Differentiation, T-Lymphocyte , Apolipoproteins E/deficiency , Atherosclerosis/blood , Atherosclerosis/pathology , B-Lymphocytes , Diet, Atherogenic , Animals , Aorta/pathology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred DBA , Mice, Knockout
7.
J Immunol ; 198(12): 4855-4867, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28500072

ABSTRACT

Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin αDß2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d-/-/ApoE-/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d-/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d-/- monocytes into ApoE-/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d-/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b-/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development.


Subject(s)
Atherosclerosis/immunology , Blood Vessels/pathology , CD11 Antigens/genetics , CD18 Antigens/genetics , Integrin alpha Chains/genetics , Macrophages/immunology , Animals , Aorta/immunology , Aorta/pathology , Apolipoproteins E/deficiency , Atherosclerosis/etiology , Atherosclerosis/pathology , Blood Vessels/immunology , CD11 Antigens/immunology , CD18 Antigens/immunology , Diet, Western , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Integrin alpha Chains/deficiency , Integrin alpha Chains/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Peritonitis/immunology , Peritonitis/pathology , Transcriptional Activation , Up-Regulation
8.
Antioxid Redox Signal ; 21(7): 1032-43, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24224492

ABSTRACT

SIGNIFICANCE: Diabetes is a widespread disease with many clinical pathologies. Despite numerous pharmaceutical strategies for treatment, the incidence of diabetes continues to increase. Hyperglycemia, observed in diabetes, causes endothelial injury resulting in microvascular and macrovascular complications such as nephropathy, retinopathy, neuropathy, and increased atherosclerosis. RECENT ADVANCES: Proteoglycans are chemically diverse macromolecules consisting of a protein core with glycosaminoglycans (GAGs) attached. Heparan sulfate proteoglycans are important compounds found on the endothelial cell membrane and in the extracellular matrix, which play an important role in growth regulation and serve as a reservoir for cytokines and other bioactive molecules. Endothelial cells are altered in hyperglycemia by a reduction in heparan sulfate and upregulation and secretion of heparanase, an enzyme that degrades heparan sulfate GAGs on proteoglycans. Reactive oxygen species, increased in diabetes, also destroy GAGs. CRITICAL ISSUES: Preservation of heparan sulfate proteoglycans on endothelial cells may be a strategy to prevent angiopathy associated with diabetes. The use of GAGs and GAG-like compounds may increase endothelial heparan sulfate and prevent an increase in the heparanase enzyme. FUTURE DIRECTIONS: Elucidating the mechanisms of GAG depletion and its significance in endothelial health may help to further understand, prevent, and treat cardiovascular complications associated with diabetes. Further studies examining the role of GAGs and GAG-like compounds in maintaining endothelial health, including their effect on heparanase, will determine the feasibility of these compounds in diabetes treatment. Preservation of heparan sulfate by decreasing heparanase may have important implications not only in diabetes, but also in cardiovascular disease and tumor biology.


Subject(s)
Diabetes Complications/metabolism , Glycosaminoglycans/metabolism , Hyperglycemia/complications , Hyperglycemia/metabolism , Animals , Diabetes Mellitus/metabolism , Endothelial Cells/metabolism , Heparan Sulfate Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Humans
9.
Cardiovasc Diabetol ; 8: 46, 2009 Aug 20.
Article in English | MEDLINE | ID: mdl-19695080

ABSTRACT

BACKGROUND: Heparan sulfate proteoglycans (HSPGs) contain glycosaminoglycan (GAG) chains made primarily of heparan sulfate (HS). Hyperglycemia in diabetes leads to endothelial injury and nephropathy, retinopathy and atherosclerosis. Decreased HSPG may contribute to diabetic endothelial injury. Decreased tissue HS in diabetes has been reported, however, endothelial HS changes are poorly studied. OBJECTIVE: To determine total GAGs, including HS, in endothelium under hyperglycemic conditions and the protective effect of insulin and heparin. METHODS: Confluent primary porcine aortic endothelial cells (PAECs) were divided into control, glucose (30 mM), insulin (0.01 unit/ml) and glucose plus insulin treatment groups for 24, 48 and 72 hours. Additionally, PAECs were treated with glucose, heparin (0.5 microg/ml) and glucose plus heparin for 72 hours. GAGs were isolated from cells and medium. GAG concentrations were determined by the carbazole assay and agarose gel electrophoresis. RESULTS: GAGs were significantly increased only in control and glucose plus insulin groups at 72 versus 24 hours. Glucose decreased cell GAGs and increased medium GAGs, and insulin alone decreased cell GAGs at all times compared to control. In the glucose plus insulin group, cell GAGs were less than control at 24 hours, and greater than glucose or insulin alone at 48 and 72 hours while GAGs in medium were greater than control at all times and glucose at 72 hours. Heparin increased GAGs in glucose treated cells and medium. CONCLUSION: High glucose and insulin alone reduces endothelial GAGs. In hyperglycemic conditions, heparin or insulin preserves GAGs which may protect cells from injury. Insulin is an effective diabetic therapy since it not only lowers blood glucose, but also protects endothelium.


Subject(s)
Endothelial Cells/drug effects , Glucose/pharmacology , Glycosaminoglycans/metabolism , Heparin/pharmacology , Insulin/pharmacology , Animals , Cells, Cultured/drug effects , Cells, Cultured/metabolism , Drug Interactions , Electrophoresis, Agar Gel , Endothelial Cells/metabolism , Glycosaminoglycans/analysis , Heparan Sulfate Proteoglycans/analysis , Heparan Sulfate Proteoglycans/metabolism , Heparitin Sulfate/analysis , Heparitin Sulfate/metabolism , Sus scrofa , Swine , Syndecans/analysis , Syndecans/metabolism , Time Factors
10.
Exp Biol Med (Maywood) ; 232(7): 927-34, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17609509

ABSTRACT

Heparan sulfate proteoglycans on the endothelial cell surface and extracellular matrix play an important role in vascular homeostasis. Previous studies have shown that the quantity of heparan sulfate is reduced in kidney and other organs in diabetes. The objectives of this study were to determine if heparanase is induced by high glucose in endothelial cells and if heparin and/or insulin or basic fibroblast growth factor (bFGF) affect this upregulation. Cultured porcine aortic endothelial cells in M199 medium were treated with high glucose (30 mM) and/or bFGF (1 or 10 ng/ml) or high glucose plus insulin (1 U/ml) and/or heparin (0.5 microg/ml) for 7 days. To help define the mechanism of endothelial damage, cells were also exposed to H(2)O(2) (0.1 mM) for 1 day or mannitol (30 mM) for 7 days. Heparanase mRNA was detected by reverse transcription polymerase chain reaction. Heparanase activity was measured by incubating cell lysates with [(35)S]labeled extracellular matrix of bovine corneal endothelial cells and analyzing released radioactive products by gel filtration and beta-scintillation. Heparanase mRNA was found in high-glucose- and H(2)O(2)-treated cells; however, it was not found in control cells, mannitol- or high glucose plus insulin- and/or heparin-treated cells, or fresh porcine tissue. Heparanase activity was only found in high-glucose- and H(2)O(2)-treated cells. As well, bFGF did not prevent heparanase mRNA upregulation by high glucose. From these observations, we concluded that heparanase upregulation by high glucose is prevented by insulin and/or heparin but not bFGF. Reactive oxygen species, but not changes in osmolarity, may be involved in the upregulation of heparanase.


Subject(s)
Aorta/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Regulation , Glucose/metabolism , Glucuronidase/biosynthesis , Heparin/metabolism , Insulin/metabolism , Up-Regulation , Animals , Cells, Cultured , Extracellular Matrix/metabolism , Glucuronidase/metabolism , Hydrogen Peroxide/metabolism , RNA, Messenger/metabolism , Swine
11.
Cardiovasc Diabetol ; 4: 12, 2005 Aug 09.
Article in English | MEDLINE | ID: mdl-16086844

ABSTRACT

BACKGROUND: Uncontrolled hyperglycemia is the main risk factor in the development of diabetic vascular complications. The endothelial cells are the first cells targeted by hyperglycemia. The mechanism of endothelial injury by high glucose is still poorly understood. Heparanase production, induced by hyperglycemia, and subsequent degradation of heparan sulfate may contribute to endothelial injury. Little is known about endothelial injury by heparanase and possible means of preventing this injury. OBJECTIVES: To determine if high glucose as well as heparanase cause endothelial cell injury and if insulin, heparin and bFGF protect cells from this injury. METHODS: Cultured porcine aortic endothelial cells were treated with high glucose (30 mM) and/or insulin (1 U/ml) and/or heparin (0.5 microg/ml) and /or basic fibroblast growth factor (bFGF) (1 ng/ml) for seven days. Cells were also treated with heparinase I (0.3 U/ml, the in vitro surrogate heparanase), plus insulin, heparin and bFGF for two days in serum free medium. Endothelial cell injury was evaluated by determining the number of live cells per culture and lactate dehydrogenase (LDH) release into medium expressed as percentage of control. RESULTS: A significant decrease in live cell number and increase in LDH release was found in endothelial cells treated with high glucose or heparinase I. Insulin and/or heparin and/or bFGF prevented these changes and thus protected cells from injury by high glucose or heparinase I. The protective ability of heparin and bFGF alone or in combination was more evident in cells damaged with heparinase I than high glucose. CONCLUSION: Endothelial cells injured by high glucose or heparinase I are protected by a combination of insulin, heparin and bFGF, although protection by heparin and/or bFGF was variable.


Subject(s)
Endothelium, Vascular/drug effects , Fibroblast Growth Factor 2/pharmacology , Glucose/pharmacology , Glucuronidase/pharmacology , Heparin/pharmacology , Insulin/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Diabetic Angiopathies/pathology , Diabetic Angiopathies/physiopathology , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Fibroblast Growth Factor 2/physiology , Glucose/physiology , Glucuronidase/physiology , Heparin/physiology , Hyperglycemia/enzymology , Hyperglycemia/pathology , Hyperglycemia/physiopathology , Insulin/physiology , L-Lactate Dehydrogenase/analysis , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...