Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 1007161, 2022.
Article in English | MEDLINE | ID: mdl-36519129

ABSTRACT

Coronary heart disease (CHD) is tightly associated with gut microbiota, but microbiota heterogeneity limits the application of microbial biomarkers and personalized interventions demand regional-specific features. The purpose of this study was to comprehensively characterize the regional pattern of gut microbiota in rural residents with CHD and assess the predictive value and clinical correlations of local microbial signatures. We profiled the gut microbiota by shotgun metagenomic sequencing from 19 CHD and 19 healthy residents in rural Xinxiang, China, and tested the physiological parameters. The results indicated that microbial diversity, as well as KEGG orthology (KO) and carbohydrate-active enzymes (CAZymes) functions, deserved no significant disparities between CHD and healthy residents. The relative abundance of Bacteroidetes phylum was significantly lower and unclassified Lachnospiraceae genus, and Eubacterium rectale species were markedly higher in CHD residents compared with the healthy control. Co-occurrence network revealed a more diverse and scattered ecology in CHD residents. LEfSe identified 39 potential biomarkers and butanoate metabolism and glycosyltransferases families were the enhanced KO and CAZymes in CHD residents, respectively. Twenty key signatures were determined by the random forest algorithm and most of them belonged to the Clostridium cluster. These key signatures harbored a superior accuracy of 83.9% to distinguish CHD and healthy residents and, fasting serum insulin, diastolic blood pressure, and body mass index were the top three clinical parameters influencing the gut bacterial community. Furthermore, we also found that low-density lipoprotein and waist circumference had significantly positive correlations with the members of the Clostridium cluster. These findings expand our knowledge in the regional-specific pattern of gut microbiota for rural CHD residents and highlight the non-invasive diagnostic value and clinical correlations of microbial signatures.


Subject(s)
Coronary Disease , Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Metagenome , Metagenomics
2.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36009201

ABSTRACT

Fine particulate matter (PM2.5) pollution remains a prominent environmental problem worldwide, posing great threats to human health. The adverse effects of PM2.5 on the respiratory and cardiovascular systems have been extensively studied, while its detrimental effects on the central nervous system (CNS), specifically neurodegenerative disorders, are less investigated. Neurodegenerative disorders are characterized by reduced neurogenesis, activated microglia, and neuroinflammation. A variety of studies involving postmortem examinations, epidemiological investigations, animal experiments, and in vitro cell models have shown that PM2.5 exposure results in neuroinflammation, oxidative stress, mitochondrial dysfunction, neuronal apoptosis, and ultimately neurodegenerative disorders, which are strongly associated with the activation of microglia. Microglia are the major innate immune cells of the brain, surveilling and maintaining the homeostasis of CNS. Upon activation by environmental and endogenous insults, such as PM exposure, microglia can enter an overactivated state that is featured by amoeboid morphology, the over-production of reactive oxygen species, and pro-inflammatory mediators. This review summarizes the evidence of microglial activation and oxidative stress and neurodegenerative disorders following PM2.5 exposure. Moreover, the possible mechanisms underlying PM2.5-induced microglial activation and neurodegenerative disorders are discussed. This knowledge provides certain clues for the development of therapies that may slow or halt the progression of neurodegenerative disorders induced by ambient PM.

SELECTION OF CITATIONS
SEARCH DETAIL
...