Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 125: 155350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237512

ABSTRACT

BACKGROUND: Myostatin (MSTN) inhibition has demonstrated promise for the treatment of diseases associated with muscle loss. In a previous study, we discovered that Glycyrrhiza uralensis (G. uralensis) crude water extract (CWE) inhibits MSTN expression while promoting myogenesis. Furthermore, three specific compounds of G. uralensis, namely liquiritigenin, tetrahydroxymethoxychalcone, and Licochalcone B (Lic B), were found to promote myoblast proliferation and differentiation, as well as accelerate the regeneration of injured muscle tissue. PURPOSE: The purpose of this study was to build on our previous findings on G. uralensis and demonstrate the potential of its two components, Licochalcone A (Lic A) and Lic B, in muscle mass regulation (by inhibiting MSTN), aging and muscle formation. METHODS: G. uralensis, Lic A, and Lic B were evaluated thoroughly using in silico, in vitro and in vivo approaches. In silico analyses included molecular docking, and dynamics simulations of these compounds with MSTN. Protein-protein docking was carried out for MSTN, as well as for the docked complex of MSTN-Lic with its receptor, activin type IIB receptor (ACVRIIB). Subsequent in vitro studies used C2C12 cell lines and primary mouse muscle stem cells to acess the cell proliferation and differentiation of normal and aged cells, levels of MSTN, Atrogin 1, and MuRF1, and plasma MSTN concentrations, employing techniques such as western blotting, immunohistochemistry, immunocytochemistry, cell proliferation and differentiation assays, and real-time RT-PCR. Furthermore, in vivo experiments using mouse models focused on measuring muscle fiber diameters. RESULTS: CWE of G. uralensis and two of its components, namely Lic A and B, promote myoblast proliferation and differentiation by inhibiting MSTN and reducing Atrogin1 and MuRF1 expressions and MSTN protein concentration in serum. In silico interaction analysis revealed that Lic A (binding energy -6.9 Kcal/mol) and B (binding energy -5.9 Kcal/mol) bind to MSTN and reduce binding between it and ACVRIIB, thereby inhibiting downstream signaling. The experimental analysis, which involved both in vitro and in vivo studies, demonstrated that the levels of MSTN, Atrogin 1, and MuRF1 were decreased when G. uralensis CWE, Lic A, or Lic B were administered into mice or treated in the mouse primary muscle satellite cells (MSCs) and C2C12 myoblasts. The diameters of muscle fibers increased in orally treated mice, and the differentiation and proliferation of C2C12 cells were enhanced. G. uralensis CWE, Lic A, and Lic B also promoted cell proliferation in aged cells, suggesting that they may have anti-muslce aging properties. They also reduced the expression and phosphorylation of SMAD2 and SMAD3 (MSTN downstream effectors), adding to the evidence that MSTN is inhibited. CONCLUSION: These findings suggest that CWE and its active constituents Lic A and Lic B have anti-mauscle aging potential. They also have the potential to be used as natural inhibitors of MSTN and as therapeutic options for disorders associated with muscle atrophy.


Subject(s)
Chalcones , Muscle Fibers, Skeletal , Myostatin , Mice , Animals , Myostatin/metabolism , Molecular Docking Simulation , Cell Differentiation , Muscle Fibers, Skeletal/metabolism , Cell Proliferation , Muscle, Skeletal/metabolism
2.
Life (Basel) ; 13(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38004292

ABSTRACT

Androgenic alopecia (AGA) is a dermatological disease with psychosocial consequences for those who experience hair loss. AGA is linked to an increase in androgen levels caused by an excess of dihydrotestosterone in blood capillaries produced from testosterone by 5α-reductase type II (5αR2), which is expressed in scalp hair follicles; 5αR2 activity and dihydrotestosterone levels are elevated in balding scalps. The diverse health benefits of flavonoids have been widely reported in epidemiological studies, and research interest continues to increase. In this study, a virtual screening approach was used to identify compounds that interact with active site residues of 5αR2 by screening a library containing 241 flavonoid compounds. Here, we report two potent flavonoid compounds, eriocitrin and silymarin, that interacted strongly with 5αR2, with binding energies of -12.1 and -11.7 kcal/mol, respectively, which were more significant than those of the control, finasteride (-11.2 kcal/mol). Molecular dynamic simulations (200 ns) were used to optimize the interactions between compounds and 5αR2 and revealed that the interaction of eriocitrin and silymarin with 5αR2 was stable. The study shows that eriocitrin and silymarin provide developmental bases for novel 5αR2 inhibitors for the management of AGA.

3.
Front Mol Biosci ; 9: 1024764, 2022.
Article in English | MEDLINE | ID: mdl-36250007

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a growing global public health issue, and dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target in T2DM. Several synthetic anti-DPP-4 medications can be used to treat T2DM. However, because of adverse effects, there is an unmet demand for the development of safe and effective medications. Natural medicines are receiving greater interest due to the inherent safety of natural compounds. Glycyrrhiza uralensis (licorice) is widely consumed and used as medicine. In this study, we investigated the abilities of a crude water extract (CWE) of G. uralensis and two of its constituents (licochalcone A (LicA) and licochalcone B (LicB)) to inhibit the enzymatic activity of DPP-4 in silico and in vitro. In silico studies showed that LicA and LicB bind tightly to the catalytic site of DPP-4 and have 11 amino acid residue interactions in common with the control inhibitor sitagliptin. Protein-protein interactions studies of LicA-DPP4 and LicB-DPP4 complexes with GLP1 and GIP reduced the DPP-4 to GLP1 and GIP interactions, indicated that these constituents might reduce the degradations of GLP1 and GIP. In addition, molecular dynamics simulations revealed that LicA and LicB stably bound to DPP-4 enzyme. Furthermore, DPP-4 enzyme assay showed the CWE of G. uralensis, LicA, and LicB concentration-dependently inhibited DPP-4; LicA and LicB had an estimated IC50 values of 347.93 and 797.84 µM, respectively. LicA and LicB inhibited DPP-4 at high concentrations, suggesting that these compounds could be used as functional food ingredients to manage T2DM.

4.
Int J Food Sci Nutr ; 66(8): 923-30, 2015.
Article in English | MEDLINE | ID: mdl-26470918

ABSTRACT

This study aimed at examining whether oral administration of galacto-oligosaccharide (GOS) and Bifidobacterium longum, individually or in combination, could exert photoprotective effects on the skin of hairless mice. GOS and/or Bifidobacterium were administered orally to hairless mice for 12 weeks. Mice were irradiated with UV light daily for four consecutive days. GOS administration increased the water-holding capacity of the skin and prevented transepidermal water loss compared with the control. A reduction in the erythema formation of 16.8% was also observed in the GOS-treated group compared with the control, and CD44 gene expression was significantly increased. Oral administration of GOS or Bifidobacterium significantly increased TIMP-1 and Col1 mRNA expression compared with the control. Our findings support that prebiotics, including GOS, are beneficial not only to the intestine, but also to the skin, and present the possibility of new nutritional strategies for the prevention of UV-induced skin damage.


Subject(s)
Bifidobacterium/metabolism , Dietary Supplements , Oligosaccharides/pharmacology , Skin/radiation effects , Ultraviolet Rays/adverse effects , Administration, Oral , Animals , Collagen Type I/genetics , Collagen Type I/metabolism , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Male , Mice , Mice, Hairless , Prebiotics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin/drug effects , Skin/pathology , Skin Aging/drug effects , Skin Aging/radiation effects , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism
5.
Planta ; 232(6): 1355-70, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20820802

ABSTRACT

Plant root-associated bacteria (rhizobacteria) elicit plant basal immunity referred to as induced systemic resistance (ISR) against multiple pathogens. Among multi-bacterial determinants involving such ISR, the induction of ISR and promotion of growth by bacterial volatile compounds was previously reported. To exploit global de novo expression of plant proteins by bacterial volatiles, proteomic analysis was performed after exposure of Arabidopsis plants to the rhizobacterium Bacillus subtilis GB03. Ethylene biosynthesis enzymes were significantly up-regulated. Analysis by quantitative reverse transcriptase polymerase chain reaction confirmed that ethylene biosynthesis-related genes SAM-2, ACS4, ACS12, and ACO2 as well as ethylene response genes, ERF1, GST2, and CHIB were up-regulated by the exposure to bacterial volatiles. More interestingly, the emission of bacterial volatiles significantly up-regulated both key defense mechanisms mediated by jasmonic acid and salicylic acid signaling pathways. In addition, high accumulation of antioxidant proteins also provided evidence of decreased sensitivity to reactive oxygen species during the elicitation of ISR by bacterial volatiles. The present results suggest that the proteomic analysis of plant defense responses in bacterial volatile-mediated ISR can reveal the mechanisms of plant basal defenses orchestrated by endogenous ethylene production pathways and the generation of reactive oxygen species.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Bacillus subtilis/metabolism , Proteome , Volatile Organic Compounds/metabolism , Antioxidants/metabolism , Arabidopsis/growth & development , Base Sequence , Chlorophyll/metabolism , DNA Primers , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Mycobiology ; 38(4): 249-55, 2010 Dec.
Article in English | MEDLINE | ID: mdl-23956664

ABSTRACT

We identified Lacrymaria velutina of the Coprinaceae in Korea. The unusually large and sturdy fruiting body, fibrillose to fibrillose-scaly cap and stalk without a volva with an obscure superior hairy ring zone or hairy annulus, and blackish brown, warted spores distinguished this species from closely related Psathyrella species. An illustrated account of the microscopic traits is presented. Fruiting bodies with obtusely hemispherical caps, 2.5~6 cm, becoming convex with age; surface dry, densely fibrillose-scaly with split margin; stipe, 4.5~6 cm, equal, hollow, fibrillose, dry, whitish above the superior ring zone, light brown below; crowded gills, adnexed, dark black at maturity. Pileipellis typically cellular with the gill edge appearing white and beaded. Blackish brown basidiospores that discolor in concentrated sulfuric acid. Spores elliptical, warted, 9~11 × 6~8 µm, with prominent snout-like germpores. Cheilocystidia abundant, 57~68 × 19~25 µm, and narrowly elongated clavate, often clustered in threes or fours. Pleurocystidia rarely present, 45~47.5 × 12~13 µm, and clavate to utriform. This trait distinguishes our sample as L. velutina from other Psathyrella spp. of the Coprinaceae, which have smooth spores. This taxon was clarified by the observation that Psathyrella spores fade in concentrated sulfuric acid. A molecular phylogenetic study revealed that our specimen was Lacrymria velutipes, which is closely related to Lacrymaria lacrymabunda. Moreover, those two species are clearly distinguishable from other Psathyrella species, which agreed with the morphologically distinctive traits described above. We believe that this is the first report of this taxon, which has not been described in Korea.

7.
Mol Cells ; 28(4): 383-8, 2009 Oct 31.
Article in English | MEDLINE | ID: mdl-19830397

ABSTRACT

The dehydration responsive element binding protein 2C (DREB2C) is a dehydration responsive element/C-repeat (DRE/CRT)-motif binding transcription factor that induced by mild heat stress. Previous experiments established that overexpression of DREB2C cDNA driven by the cauliflower mosaic virus 35S promoter (35S:DREB2C) resulted in increased heat tolerance in Arabidopsis. We first analyzed the proteomic profiles in wild-type and 35S:DREB2C plants at a normal temperature (22 degrees C), but could not detect any differences between the proteomes of wild-type and 35S:DREB2C plants. The transcript level of DREB2C in 35S:DREB2C plants after treatment with mild heat stress was increased more than two times compared with expression in 35S:DREB2C plants under unstressed condition. A proteomic approach was used to decipher the molecular mechanisms underlying thermotolerance in 35S:DREB2C Arabidopsis plants. Eleven protein spots were identified as being differentially regulated in 35S:DREB2C plants. Moreover, in silico motif analysis showed that peptidyl-prolyl isomerase ROC4, glutathione transferase 8, pyridoxal biosynthesis protein PDX1, and elongation factor Tu contained one or more DRE/CRT motifs. To our knowledge, this study is the first to identify possible targets of DREB2C transcription factors at the protein level. The proteomic results were in agreement with transcriptional data.


Subject(s)
Arabidopsis Proteins/analysis , Arabidopsis/genetics , Gene Expression Regulation, Plant/physiology , Heat-Shock Response/genetics , Transcription Factors/analysis , Arabidopsis Proteins/genetics , Dehydration/genetics , Hot Temperature , Proteomics/methods , RNA, Messenger/analysis , Transcription Factors/genetics
8.
Mycobiology ; 36(3): 143-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-23997614

ABSTRACT

We have detected the slime mold, Diachea leucopodia (GNU06-10) in a strawberry greenhouse located in Sancheong-gun, Gyeongnam. Typical fruiting bodies had developed gregariously on the strawberry leaves, petioles, and plant debris on ground soil habitat, and also surprisingly on plastic pipes and a vinyl covering. Field samples were examined via stereomicroscopy, light microscopy, and SEM for the determination of morphological characteristics. Dark-brown to black spores formed gregariously within the stipitate cylindrical sporangium, and were covered by an iridescent peridium, which may be intact at maturity, or may have disintegrated. The upper portion of the peridium generally breaks up to expose the spores, whereas the lower portion was usually persistent. The results of energy dispersive X-ray spectrometer (EDS) analysis showed that lime was present in the stalk and columella but absent from the spores, capillitium, and peridium. The above characteristics confirm its taxonomic position in the genus Diachea. However, this genus is intermediate in character between the Physarales and Stemonitales of the Myxogastromycetidae. Hence, this genus had been classified as a member of the Stemonitales until the mid-1970's, on the basis of its iridescent peridium and noncalcareous capillitial system, similar to Comatricha of the Stemonitaceae. By way of contrast, emphasis on morphological characteristics, most notably the calcareous stalk and typical columella, places Diachea within the order Physarales. The presence of a phaneroplasmodium during the trophic stage and lime deposition in its sporophores, as was confirmed in this work, supported the inclusion of Diachea in the Physarales, and the noncalcareous capillitial system verified its identification as a member of the Didymiaceae. Further characteristics of the species D. leucopodia include the following: phaneroplasmodium, spore globose 7.5 µm in diameter, very minutely roughened; sporangia 500 µm × 1mm, more or less cylindrical, gregarious, stalked 1.2mm; stalk and columella white.

9.
Gene ; 383: 71-80, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-16973305

ABSTRACT

Numerous nodule-specific genes, which are involved in the root nodule development and function, have been known and are still being discovered. Here, we reported the structure, expression, and genetic map location of two novel nodule-specific genes. First, two EST groups, one obtained from a nodule library and the other from all aboveground tissue libraries, were clustered with regard to in silico expression profiles. We compiled a pool of 103 putative nodule-specific sequence clusters. Then, two representative ESTs were selected for further experimental analyses. According to the full-length cDNA sequences, one was an EST of a novel nodule-specific polygalacturonase gene, GmPGN, and the other was an EST of a new short nodule-specific gene, GmEKN. The results of expression analyses of the GmPGN cDNAs indicated that GmPGN expression was not detectable in any of the soybean tissues except in the nodule tissue and may be regulated via alternative splicing. GmEKN expression was the most strongly detected in the nodule. The predicted GmEKN protein is both glutamic acid- and lysine-rich, and is also highly hydrophilic. Genetic mapping located GmPGN near the known quantitative trait locus conferring resistance to soybean cyst nematode on soybean molecular linkage group (MLG) B1, and GmEKN on MLG A2. These results provide useful information for the use of these genes in research on the orchestration of numerous genes in nodule development and function.


Subject(s)
Genes, Plant , Glycine max/genetics , Amino Acid Sequence , Base Sequence , Chromosome Mapping , DNA, Plant/genetics , Databases, Nucleic Acid , Expressed Sequence Tags , Gene Expression , Molecular Sequence Data , Multigene Family , Polygalacturonase/genetics , Root Nodules, Plant/genetics , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...