Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 194(4): 2434-2448, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38214208

ABSTRACT

Cereal endosperm represents the most important source of the world's food. Nevertheless, the molecular mechanisms behind sugar import into rice (Oryza sativa) endosperm and their relationship with auxin signaling are poorly understood. Here, we report that auxin transport inhibitor response 1 (TIR1) plays an essential role in rice grain yield and quality via modulating sugar transport into endosperm. The fluctuations of OsTIR1 transcripts parallel to the early stage of grain expansion among those of the 5 TIR1/AFB (auxin-signaling F-box) auxin co-receptor proteins. OsTIR1 is abundantly expressed in ovular vascular trace, nucellar projection, nucellar epidermis, aleurone layer cells, and endosperm, providing a potential path for sugar into the endosperm. Compared to wild-type (WT) plants, starch accumulation is repressed by mutation of OsTIR1 and improved by overexpression of the gene, ultimately leading to reduced grain yield and quality in tir1 mutants but improvement in overexpression lines. Of the rice AUXIN RESPONSE FACTOR (ARF) genes, only the OsARF25 transcript is repressed in tir1 mutants and enhanced by overexpression of OsTIR1; its highest transcript is recorded at 10 d after fertilization, consistent with OsTIR1 expression. Also, OsARF25 can bind the promoter of the sugar transporter OsSWEET11 (SWEET, sugars will eventually be exported transporter) in vivo and in vitro. arf25 and arf25/sweet11 mutants exhibit reduced starch content and seed size (relative to the WTs), similar to tir1 mutants. Our data reveal that OsTIR1 mediates sugar import into endosperm via the auxin signaling component OsARF25 interacting with sugar transporter OsSWEET11. The results of this study are of great significance to further clarify the regulatory mechanism of auxin signaling on grain development in rice.


Subject(s)
Oryza , Oryza/metabolism , Plant Proteins/metabolism , Seeds/genetics , Endosperm/metabolism , Edible Grain/metabolism , Starch/metabolism , Indoleacetic Acids/metabolism , Sugars/metabolism , Gene Expression Regulation, Plant
2.
Sci Total Environ ; 833: 155183, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421479

ABSTRACT

Biochar (i.e., pyrochar and hydrochar) application is a promising strategy to improve soil quality and productivity. However, the comparison of biochars with different carbonization methods and feedstocks for the plant growth in the coastal salt-affected soil remains limited. In this study, a 30-day microcosmic experiment was conducted to compare the effects of pyrochars and hydrochars derived from reed straw (RPC and RHC) and cow manure (CPC and CHC) on the peanut (Arachis hypogaea L.) seedling growth in a coastal salt-affected soil of Yellow River Delta, China. The results showed that RPC, CHC and CPC significantly elevated fresh shoot weight by 67.77%-89.37%, whereas the RHC amendment showed little effect. The malondialdehyde contents in peanut seedling leaves were significantly declined by 25.28%-35.51% with pyrochar and hydrochar amendments, which might be associated with the enhanced proline contents and K/Na ratios. The stimulation of certain phytohormones (i.e., indole-3-acetic acid, zeatin riboside, gibberellic acid 3) in peanut seedlings with pyrochar and hydrochar amendments might be attributed to the growth enhancement. RPC, CPC and CHC improved the soil properties and fertility such as cation-exchange capacity (CEC), total nitrogen, and available potassium and water holding capacity (WHC) of the coastal salt-affected soil. However, RHC not only significantly decreased soil CEC and WHC, but also increased soil exchangeable sodium percentage. The abundances of soil beneficial bacteria, such as f_Gemmatimonadacea, Sphingomonas, Blastococcus and Lysobacter were enhanced by RPC, CHC and CPC amendments, which were mainly associated with the increased WHC and CEC. Fungal community was less sensitive to pyrochar and hydrochar amendments than bacterial community according to the relative abundance and diversity, and beneficial fungi, such as Oidiodendron and Sarocladium were enriched in the CHC soil. Overall, the application of RPC, CHC and CPC showed greater potentials for the enhancement of peanut growth in a coastal salt-affected soil.


Subject(s)
Seedlings , Soil , Arachis , Charcoal , Manure , Rivers , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...