Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1724: 464928, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38663320

ABSTRACT

Colorants have been a staple in the cosmetics industry for a considerable time, although certain varieties have been banned owing to health risks. Detecting and confirming these banned colorants simultaneously poses several challenges when employing LC-MS/MS. Molecular networking is a promising analytical technology that can be used to predict the structure of components and the correlation between them using structural and MS/MS spectral similarities. Molecular networking entails assessing the number of fragmented ions and the cosine score (the closer it is to one, the higher the similarity). In this study, we developed and verified a method for the simultaneous quantitative analysis of the 26 banned colorants in cosmetics using LC-MS/MS. Additionally, we propose a novel approach that combines LC-Q-TOF-MS and molecular networking technology to detect banned colorants in cosmetics. For successful molecular networking, a minimum of six fragment ions with cosine scores exceeding 0.5 is required. We developed a screening method for characterizing banned colorants using molecular networking based on LC-TOF-MS results for 26 banned colorants. Furthermore, we demonstrated that our established method can be used for screening by analyzing actual cosmetics (eyebrow tattoo, lipstick tattoo, and hair tint) spiked with three non-targeted banned colorants with similar structures (m/z 267.116, 315.149, and 345.157) in cosmetics. The combination of molecular networking techniques and LC-MS/MS proves highly advantageous for the swift characterization and screening of non-targeted colorants in cosmetics.


Subject(s)
Coloring Agents , Cosmetics , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Cosmetics/chemistry , Cosmetics/analysis , Chromatography, Liquid/methods , Coloring Agents/chemistry , Coloring Agents/analysis
2.
Rapid Commun Mass Spectrom ; 38(5): e9705, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38343169

ABSTRACT

RATIONALE: The demand for weight loss products is increasing as slimness emerges as the new aesthetic standard and people's desire to achieve it increases. In addition, the distribution and sale of products containing illegal ingredients, pharmaceuticals, and chemicals for which safety is not guaranteed and that cannot be used as foods or dietary supplements are increasing. Thus, the development of an analytical method that could monitor these illegal products is required. METHODS: A high-performance liquid chromatography-photodiode array method capable of rapid and reliable qualitative and quantitative analyses of 43 weight loss agents was established and validated. RESULTS: The process involved dividing analytes into three groups for rapid analysis; when bisacodyl was mixed with chlorocyclopentylsibutramine, it decomposed into its metabolites: monoacetyl bisacodyl and bis-(p-hydroxypheny)-pyridyl-2-methane. This decomposition was due to NaOH that was used to prepare the chlorocyclopentylsibutramine standard solution. Bisacodyl did not degrade when mixed with neutralized chlorocyclopentylsibutramine, whereas when NaOH was added, it rapidly degraded. We identified the bisacodyl degradation products using liquid chromatography-quadrupole-Orbitrap/mass spectrometry. MS2 spectra with proposed structures of fragment peaks were also obtained. CONCLUSIONS: The developed method could be used to regulate slimming products that threaten public health, and knowledge of bisacodyl degradation will be used as the basis for developing an analytic method.


Subject(s)
Anti-Obesity Agents , Humans , Chromatography, High Pressure Liquid/methods , Anti-Obesity Agents/analysis , Bisacodyl/analysis , Sodium Hydroxide , Dietary Supplements/analysis
3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638827

ABSTRACT

Interaction of cannabinoid receptor type 1 (CB1) and GABAergic neuronal activity is involved in drug abuse-related behavior. However, its role in drug-dependent Pavlovian conditioning is not well understood. In this study, we aimed to evaluate the effects of a CB1 agonist, JWH-210, on the development of conditioned place preference (CPP)-induced by methamphetamine (METH). Pretreatment with a synthetic cannabinoid, JWH-210 (CB1 agonist), increased METH-induced CPP score and METH-induced dopamine release in acute striatal slices. Interestingly, CB1 was expressed in glutamate decarboxylase 67 (GAD67) positive cells, and overexpression of CB1 increased GAD67 expression, while CB1 knockdown reduced GAD67 expression in vivo and in vitro. GAD67 is known as an enzyme involved in the synthesis of GABA. CB1 knockdown in the mice striatum increased METH-induced CPP. When GAD67 decreased in the mice striatum, mRNA level of CB1 did not change, suggesting that CB1 can regulate GAD67 expression. GAD67 knockdown in the mouse striatum augmented apomorphine (dopamine receptor D2 agonist)-induced climbing behavior and METH-induced CPP score. Moreover, in the human brain, mRNA level of GAD67 was found to be decreased in drug users. Therefore, we suggest that CB1 potentiates METH-induced CPP through inhibitory GABAergic regulation of dopaminergic neuronal activity.


Subject(s)
Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Gene Expression Regulation, Enzymologic , Glutamate Decarboxylase/biosynthesis , Receptor, Cannabinoid, CB1/metabolism , Substance-Related Disorders/metabolism , Animals , Apomorphine/pharmacology , Gene Knockdown Techniques , Glutamate Decarboxylase/genetics , Humans , Indoles/pharmacology , Male , Methamphetamine/pharmacology , Mice , Naphthalenes/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/genetics
4.
Naunyn Schmiedebergs Arch Pharmacol ; 390(12): 1201-1209, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28828742

ABSTRACT

The problem of new psychoactive substances (NPS) is emerging globally. However, the immunotoxicity of synthetic cannabinoids is not evaluated extensively yet. The purpose of the present study was to investigate whether synthetic cannabinoids (JWH-210 and JWH-030) induce adverse effects on lymphoid organs, viability of splenocytes and thymocytes, and immune cell activator and cytokines in mice. JWH-210 (10 mg/kg, 3 days, i.p.) is more likely to have cytotoxicity and reduce lymphoid organ weight than JWH-030 of ICR mice in vivo. We also demonstrated that JWH-210 administration resulted in the decrease of expression levels of T-cell activator including Cd3e, Cd3g, Cd74p31, and Cd74p41, while JWH-030 increased Cd3g levels. In addition, JWH-210 reduced expression levels of cytokines, such as interleukin-3, interleukin-5, and interleukin-6. Furthermore, we demonstrated that a CB2 receptor antagonist, AM630 inhibited JWH-210-induced cytotoxicity, whereas a CB1 receptor antagonist, rimonabant did not in primary cultured splenocytes. These results suggest that JWH-210 has a cytotoxicity via CB2 receptor action and results in decrement of lymphoid organ weights, T-cell activator, and cytokine mRNA expression levels.


Subject(s)
Indoles/pharmacology , Lymphoid Tissue/drug effects , Naphthalenes/pharmacology , Receptor, Cannabinoid, CB2/agonists , T-Lymphocytes/drug effects , Animals , B7-1 Antigen/metabolism , Cell Survival/drug effects , Cytokines/metabolism , Female , Male , Mice , Mice, Inbred ICR , Organ Size/drug effects , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Rimonabant , Spleen/cytology , Spleen/drug effects , Thymocytes/drug effects , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
5.
Biomol Ther (Seoul) ; 25(6): 659-664, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28190317

ABSTRACT

Although lisdexamfetamine is used as a recreational drug, little research exists regarding its potential for dependence or its precise mechanisms of action. This study aims to evaluate the psychoactivity and dependence profile of lisdexamfetamine using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques are used to assess alterations in the dopamine levels in striatal synaptosomes following administration of lisdexamfetamine. Lisdexamfetamine increased both conditioned place preference and self-administration. Moreover, after administration of the lisdexamfetamine, dopamine levels in the striatal synaptosomes were significantly increased. Although some modifications should be made to the analytical methods, performing high performance liquid chromatography studies on synaptosomes can aid in predicting dependence liability when studying new psychoactive substances in the future. Collectively, lisdexamfetamine has potential for dependence possible via dopaminergic pathway.

6.
Biomol Ther (Seoul) ; 25(3): 288-295, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28173639

ABSTRACT

The incidence of polypharmacy-which can result in drug-drug interactions-has increased in recent years. Drug-metabolizing enzymes and drug transporters are important polypharmacy modulators. In this study, the effects of bosentan and rifampin on the expression and activities of organic anion-transporting peptide (OATP) and cytochrome P450 (CYP450) 2C9 and CYP3A4 were investigated in vitro. HEK293 cells and primary human hepatocytes overexpressing the target genes were treated with bosentan and various concentrations of rifampin, which decreased the uptake activities of OATP transporters in a dose-dependent manner. In primary human hepatocytes, CYP2C9 and CYP3A4 gene expression and activities decreased upon treatment with 20 µM bosentan+200 µM rifampin. Rifampin also reduced gene expression of OATP1B1, OATP1B3, and OATP2B1 transporter, and inhibited bosentan influx in human hepatocytes at increasing concentrations. These results confirm rifampin- and bosentan-induced interactions between OATP transporters and CYP450.

7.
Pharmacol Biochem Behav ; 149: 17-22, 2016 10.
Article in English | MEDLINE | ID: mdl-27502147

ABSTRACT

Although 5-(2-aminopropyl)benzofuran (5-APB) and 7-bromo-5-(2-chlorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one (phenazepam) are being used as recreational drugs, research on their dependence liability or mechanisms of action is lacking. The present study aimed to evaluate the behavioral effects and dependence liability of these drugs using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques were used to assess the substance-induced alterations in synaptosome-released dopamine. While both of the tested substances elicited increases in conditioned place preference and dopamine, neither of them facilitated self-administration, suggesting that 5-APB and phenazepam have rewarding effects, rather than reinforcing effects.


Subject(s)
Benzodiazepines/administration & dosage , Benzofurans/administration & dosage , Brain/metabolism , Designer Drugs/administration & dosage , Dopamine/biosynthesis , Propylamines/administration & dosage , Substance-Related Disorders/metabolism , Animals , Brain/drug effects , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred ICR , Rats , Rats, Sprague-Dawley , Self Administration
8.
Neurosci Lett ; 629: 68-72, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27369324

ABSTRACT

The abuse of alkyl nitrites is common among adolescents and young adults worldwide. However, the information regarding the effects of alkyl nitrites on the central nervous system and the associated psychological abuse potential is scarce. The abuse potential of 3 representative alkyl nitrites - isobutyl nitrite, isoamyl nitrite, and butyl nitrite - was evaluated in mice using conditioned place preference tests with an unbiased method. The dopamine levels released by synaptosomes extracted from the striatal region were measured using high performance liquid chromatography. Mice treated with the test substances (50mg/kg, i.p.) exhibited a significantly increased drug-paired place preference. Moreover, greater levels of dopamine were released by striatal region synaptosomes in response to isobutyl nitrite treatment in mice. Thus, our findings suggest that alkyl nitrites could lead to psychological dependence and dopaminergic effects. Furthermore, these results provide scientific evidence to support the regulation of alkyl nitrites as psychoactive substances in the future.


Subject(s)
Amyl Nitrite/analogs & derivatives , Conditioning, Classical/drug effects , Corpus Striatum/drug effects , Dopamine/metabolism , Nitrites/toxicity , Substance-Related Disorders/etiology , Amyl Nitrite/chemistry , Amyl Nitrite/toxicity , Animals , Corpus Striatum/metabolism , Male , Mice , Mice, Inbred ICR , Nitrites/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptosomes/drug effects , Synaptosomes/metabolism
9.
Neurosci Lett ; 619: 79-85, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26971703

ABSTRACT

Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function.


Subject(s)
Amyl Nitrite/analogs & derivatives , Ataxia/psychology , Learning/drug effects , Nitrites/toxicity , Amyl Nitrite/toxicity , Animals , Ataxia/chemically induced , Male , Maze Learning/drug effects , Memory/drug effects , Rats, Sprague-Dawley , Rotarod Performance Test , Spatial Learning/drug effects
10.
Biomol Ther (Seoul) ; 23(6): 597-603, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26535086

ABSTRACT

Synthetic cannabinoids JWH-018 and JWH-250 in 'herbal incense' also called 'spice' were first introduced in many countries. Numerous synthetic cannabinoids with similar chemical structures emerged simultaneously and suddenly. Currently there are not sufficient data on their adverse effects including neurotoxicity. There are only anecdotal reports that suggest their toxicity. In the present study, we evaluated the neurotoxicity of two synthetic cannabinoids (JWH-081 and JWH-210) through observation of various behavioral changes and analysis of histopathological changes using experimental mice with various doses (0.1, 1, 5 mg/kg). In functional observation battery (FOB) test, animals treated with 5 mg/kg of JWH-081 or JWH-210 showed traction and tremor. Their locomotor activities and rotarod retention time were significantly (p<0.05) decreased. However, no significant change was observed in learning or memory function. In histopathological analysis, neural cells of the animals treated with the high dose (5 mg/kg) of JWH-081 or JWH-210 showed distorted nuclei and nucleus membranes in the core shell of nucleus accumbens, suggesting neurotoxicity. Our results suggest that JWH-081 and JWH-210 may be neurotoxic substances through changing neuronal cell damages, especially in the core shell part of nucleus accumbens. To confirm our findings, further studies are needed in the future.

11.
Biomol Ther (Seoul) ; 23(5): 486-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26336590

ABSTRACT

Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their inter-assay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...